Molecular modeling for the investigation of UV absorbers for sunscreens: Triazine and benzotriazole derivatives
[Display omitted] •TDDFT reproduced accurately experimental UV absorption spectra.•Molecular orbitals involved in the dominant excitations are described.•Band gap energy, chemical potential and hardness are related to photoprotection. Investigations on the photoprotection mechanisms of molecular sun...
Gespeichert in:
Veröffentlicht in: | Journal of photochemistry and photobiology. A, Chemistry. Chemistry., 2018-04, Vol.356, p.219-229 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 229 |
---|---|
container_issue | |
container_start_page | 219 |
container_title | Journal of photochemistry and photobiology. A, Chemistry. |
container_volume | 356 |
creator | Santos, Bianca A.M.C. da Silva, Anne C.P. Bello, Murilo L. Gonçalves, Arlan S. Gouvêa, Thais A. Rodrigues, Rayane F. Cabral, Lucio M. Rodrigues, Carlos R. |
description | [Display omitted]
•TDDFT reproduced accurately experimental UV absorption spectra.•Molecular orbitals involved in the dominant excitations are described.•Band gap energy, chemical potential and hardness are related to photoprotection.
Investigations on the photoprotection mechanisms of molecular sunscreens is critical to developing more efficacious sunscreen products. Molecular modeling has proved to be very helpful in understanding intrinsic properties of molecules that protect our skin from the harmful rays of the sun and gathering useful features to developing improved sunscreens. Herein the investigation focuses on the stereoelectronic properties related to photoprotection mechanisms of triazine and benzotriazole derivatives, important compound classes based on their physical-chemical properties, such as resonance and ultraviolet (UV) broad spectrum absorption (UVA and UVB). The method proved to be a valuable tool to reproduce the experimental UV absorption of a set of triazine and benzotriazole derivatives with compromise between the accuracy and the computational speed. All calculations were carried out considering only the isolated UV filter (in vacuum) and have provided a qualitative prediction and interpretation of absorption properties. The lowest band gap energy (Ebg), highest chemical potential (μ) and lowest chemical hardness (η) values were observed to the orthohydroxy substituted derivatives that are able to undergo excited-state proton transfer (ESPT), supporting the UVA absorption and resulting in excellent photostability. |
doi_str_mv | 10.1016/j.jphotochem.2017.12.036 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2064413239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1010603017314284</els_id><sourcerecordid>2064413239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-d718e67a97c3fbffc784f282a1f6520d6457ba37d080149a6f10918e993c810e3</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhCMEEqXwDpY4J6zt1Em4QcWfBOLScrUcZ906au1ip5Xo0-NSJI6cdrWa-VYzWUYoFBSouOmLfrP0g9dLXBcMaFVQVgAXJ9mI1hXPmRDiNO1AIRfA4Ty7iLEHgLIs6Sjzb36FertSgax9hyvrFsT4QIYlEut2GAe7UIP1jnhD5h9EtdGHFkP8UcWtizogunhLZsGqvXVIlOtIi27vh8Ml4UmHwe4SJeEuszOjVhGvfuc4mz8-zKbP-ev708v07jXXvBRD3lW0RlGpptLctMboqi4Nq5miRkwYdKKcVK3iVQc10LJRwlBokqVpuK4pIB9n10fuJvjPbYohe78NLr2UDESKzhlvkqo-qnTwMQY0chPsWoUvSUEe6pW9_KtXHuqVlMlUb7LeH62YUuwsBhm1RaexswH1IDtv_4d8AwFpiq8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2064413239</pqid></control><display><type>article</type><title>Molecular modeling for the investigation of UV absorbers for sunscreens: Triazine and benzotriazole derivatives</title><source>Elsevier ScienceDirect Journals</source><creator>Santos, Bianca A.M.C. ; da Silva, Anne C.P. ; Bello, Murilo L. ; Gonçalves, Arlan S. ; Gouvêa, Thais A. ; Rodrigues, Rayane F. ; Cabral, Lucio M. ; Rodrigues, Carlos R.</creator><creatorcontrib>Santos, Bianca A.M.C. ; da Silva, Anne C.P. ; Bello, Murilo L. ; Gonçalves, Arlan S. ; Gouvêa, Thais A. ; Rodrigues, Rayane F. ; Cabral, Lucio M. ; Rodrigues, Carlos R.</creatorcontrib><description>[Display omitted]
•TDDFT reproduced accurately experimental UV absorption spectra.•Molecular orbitals involved in the dominant excitations are described.•Band gap energy, chemical potential and hardness are related to photoprotection.
Investigations on the photoprotection mechanisms of molecular sunscreens is critical to developing more efficacious sunscreen products. Molecular modeling has proved to be very helpful in understanding intrinsic properties of molecules that protect our skin from the harmful rays of the sun and gathering useful features to developing improved sunscreens. Herein the investigation focuses on the stereoelectronic properties related to photoprotection mechanisms of triazine and benzotriazole derivatives, important compound classes based on their physical-chemical properties, such as resonance and ultraviolet (UV) broad spectrum absorption (UVA and UVB). The method proved to be a valuable tool to reproduce the experimental UV absorption of a set of triazine and benzotriazole derivatives with compromise between the accuracy and the computational speed. All calculations were carried out considering only the isolated UV filter (in vacuum) and have provided a qualitative prediction and interpretation of absorption properties. The lowest band gap energy (Ebg), highest chemical potential (μ) and lowest chemical hardness (η) values were observed to the orthohydroxy substituted derivatives that are able to undergo excited-state proton transfer (ESPT), supporting the UVA absorption and resulting in excellent photostability.</description><identifier>ISSN: 1010-6030</identifier><identifier>EISSN: 1873-2666</identifier><identifier>DOI: 10.1016/j.jphotochem.2017.12.036</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Absorption ; Benzotriazole ; Benzotriazoles ; Chemical potential ; Chemical properties ; Computer applications ; Derivatives ; Energy gap ; Molecular chains ; Molecular modeling ; Molecular modelling ; Organic chemistry ; Photochemistry ; Skin ; Sun screens ; Sunscreen ; Sunscreens ; Theoretical spectroscopy ; Triazine ; Triazines ; Ultraviolet filters ; Ultraviolet radiation ; UV absorbers ; Vacuum</subject><ispartof>Journal of photochemistry and photobiology. A, Chemistry., 2018-04, Vol.356, p.219-229</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV Apr 1, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-d718e67a97c3fbffc784f282a1f6520d6457ba37d080149a6f10918e993c810e3</citedby><cites>FETCH-LOGICAL-c346t-d718e67a97c3fbffc784f282a1f6520d6457ba37d080149a6f10918e993c810e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1010603017314284$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Santos, Bianca A.M.C.</creatorcontrib><creatorcontrib>da Silva, Anne C.P.</creatorcontrib><creatorcontrib>Bello, Murilo L.</creatorcontrib><creatorcontrib>Gonçalves, Arlan S.</creatorcontrib><creatorcontrib>Gouvêa, Thais A.</creatorcontrib><creatorcontrib>Rodrigues, Rayane F.</creatorcontrib><creatorcontrib>Cabral, Lucio M.</creatorcontrib><creatorcontrib>Rodrigues, Carlos R.</creatorcontrib><title>Molecular modeling for the investigation of UV absorbers for sunscreens: Triazine and benzotriazole derivatives</title><title>Journal of photochemistry and photobiology. A, Chemistry.</title><description>[Display omitted]
•TDDFT reproduced accurately experimental UV absorption spectra.•Molecular orbitals involved in the dominant excitations are described.•Band gap energy, chemical potential and hardness are related to photoprotection.
Investigations on the photoprotection mechanisms of molecular sunscreens is critical to developing more efficacious sunscreen products. Molecular modeling has proved to be very helpful in understanding intrinsic properties of molecules that protect our skin from the harmful rays of the sun and gathering useful features to developing improved sunscreens. Herein the investigation focuses on the stereoelectronic properties related to photoprotection mechanisms of triazine and benzotriazole derivatives, important compound classes based on their physical-chemical properties, such as resonance and ultraviolet (UV) broad spectrum absorption (UVA and UVB). The method proved to be a valuable tool to reproduce the experimental UV absorption of a set of triazine and benzotriazole derivatives with compromise between the accuracy and the computational speed. All calculations were carried out considering only the isolated UV filter (in vacuum) and have provided a qualitative prediction and interpretation of absorption properties. The lowest band gap energy (Ebg), highest chemical potential (μ) and lowest chemical hardness (η) values were observed to the orthohydroxy substituted derivatives that are able to undergo excited-state proton transfer (ESPT), supporting the UVA absorption and resulting in excellent photostability.</description><subject>Absorption</subject><subject>Benzotriazole</subject><subject>Benzotriazoles</subject><subject>Chemical potential</subject><subject>Chemical properties</subject><subject>Computer applications</subject><subject>Derivatives</subject><subject>Energy gap</subject><subject>Molecular chains</subject><subject>Molecular modeling</subject><subject>Molecular modelling</subject><subject>Organic chemistry</subject><subject>Photochemistry</subject><subject>Skin</subject><subject>Sun screens</subject><subject>Sunscreen</subject><subject>Sunscreens</subject><subject>Theoretical spectroscopy</subject><subject>Triazine</subject><subject>Triazines</subject><subject>Ultraviolet filters</subject><subject>Ultraviolet radiation</subject><subject>UV absorbers</subject><subject>Vacuum</subject><issn>1010-6030</issn><issn>1873-2666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhCMEEqXwDpY4J6zt1Em4QcWfBOLScrUcZ906au1ip5Xo0-NSJI6cdrWa-VYzWUYoFBSouOmLfrP0g9dLXBcMaFVQVgAXJ9mI1hXPmRDiNO1AIRfA4Ty7iLEHgLIs6Sjzb36FertSgax9hyvrFsT4QIYlEut2GAe7UIP1jnhD5h9EtdGHFkP8UcWtizogunhLZsGqvXVIlOtIi27vh8Ml4UmHwe4SJeEuszOjVhGvfuc4mz8-zKbP-ev708v07jXXvBRD3lW0RlGpptLctMboqi4Nq5miRkwYdKKcVK3iVQc10LJRwlBokqVpuK4pIB9n10fuJvjPbYohe78NLr2UDESKzhlvkqo-qnTwMQY0chPsWoUvSUEe6pW9_KtXHuqVlMlUb7LeH62YUuwsBhm1RaexswH1IDtv_4d8AwFpiq8</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Santos, Bianca A.M.C.</creator><creator>da Silva, Anne C.P.</creator><creator>Bello, Murilo L.</creator><creator>Gonçalves, Arlan S.</creator><creator>Gouvêa, Thais A.</creator><creator>Rodrigues, Rayane F.</creator><creator>Cabral, Lucio M.</creator><creator>Rodrigues, Carlos R.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>20180401</creationdate><title>Molecular modeling for the investigation of UV absorbers for sunscreens: Triazine and benzotriazole derivatives</title><author>Santos, Bianca A.M.C. ; da Silva, Anne C.P. ; Bello, Murilo L. ; Gonçalves, Arlan S. ; Gouvêa, Thais A. ; Rodrigues, Rayane F. ; Cabral, Lucio M. ; Rodrigues, Carlos R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-d718e67a97c3fbffc784f282a1f6520d6457ba37d080149a6f10918e993c810e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Absorption</topic><topic>Benzotriazole</topic><topic>Benzotriazoles</topic><topic>Chemical potential</topic><topic>Chemical properties</topic><topic>Computer applications</topic><topic>Derivatives</topic><topic>Energy gap</topic><topic>Molecular chains</topic><topic>Molecular modeling</topic><topic>Molecular modelling</topic><topic>Organic chemistry</topic><topic>Photochemistry</topic><topic>Skin</topic><topic>Sun screens</topic><topic>Sunscreen</topic><topic>Sunscreens</topic><topic>Theoretical spectroscopy</topic><topic>Triazine</topic><topic>Triazines</topic><topic>Ultraviolet filters</topic><topic>Ultraviolet radiation</topic><topic>UV absorbers</topic><topic>Vacuum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santos, Bianca A.M.C.</creatorcontrib><creatorcontrib>da Silva, Anne C.P.</creatorcontrib><creatorcontrib>Bello, Murilo L.</creatorcontrib><creatorcontrib>Gonçalves, Arlan S.</creatorcontrib><creatorcontrib>Gouvêa, Thais A.</creatorcontrib><creatorcontrib>Rodrigues, Rayane F.</creatorcontrib><creatorcontrib>Cabral, Lucio M.</creatorcontrib><creatorcontrib>Rodrigues, Carlos R.</creatorcontrib><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of photochemistry and photobiology. A, Chemistry.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santos, Bianca A.M.C.</au><au>da Silva, Anne C.P.</au><au>Bello, Murilo L.</au><au>Gonçalves, Arlan S.</au><au>Gouvêa, Thais A.</au><au>Rodrigues, Rayane F.</au><au>Cabral, Lucio M.</au><au>Rodrigues, Carlos R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular modeling for the investigation of UV absorbers for sunscreens: Triazine and benzotriazole derivatives</atitle><jtitle>Journal of photochemistry and photobiology. A, Chemistry.</jtitle><date>2018-04-01</date><risdate>2018</risdate><volume>356</volume><spage>219</spage><epage>229</epage><pages>219-229</pages><issn>1010-6030</issn><eissn>1873-2666</eissn><abstract>[Display omitted]
•TDDFT reproduced accurately experimental UV absorption spectra.•Molecular orbitals involved in the dominant excitations are described.•Band gap energy, chemical potential and hardness are related to photoprotection.
Investigations on the photoprotection mechanisms of molecular sunscreens is critical to developing more efficacious sunscreen products. Molecular modeling has proved to be very helpful in understanding intrinsic properties of molecules that protect our skin from the harmful rays of the sun and gathering useful features to developing improved sunscreens. Herein the investigation focuses on the stereoelectronic properties related to photoprotection mechanisms of triazine and benzotriazole derivatives, important compound classes based on their physical-chemical properties, such as resonance and ultraviolet (UV) broad spectrum absorption (UVA and UVB). The method proved to be a valuable tool to reproduce the experimental UV absorption of a set of triazine and benzotriazole derivatives with compromise between the accuracy and the computational speed. All calculations were carried out considering only the isolated UV filter (in vacuum) and have provided a qualitative prediction and interpretation of absorption properties. The lowest band gap energy (Ebg), highest chemical potential (μ) and lowest chemical hardness (η) values were observed to the orthohydroxy substituted derivatives that are able to undergo excited-state proton transfer (ESPT), supporting the UVA absorption and resulting in excellent photostability.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jphotochem.2017.12.036</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1010-6030 |
ispartof | Journal of photochemistry and photobiology. A, Chemistry., 2018-04, Vol.356, p.219-229 |
issn | 1010-6030 1873-2666 |
language | eng |
recordid | cdi_proquest_journals_2064413239 |
source | Elsevier ScienceDirect Journals |
subjects | Absorption Benzotriazole Benzotriazoles Chemical potential Chemical properties Computer applications Derivatives Energy gap Molecular chains Molecular modeling Molecular modelling Organic chemistry Photochemistry Skin Sun screens Sunscreen Sunscreens Theoretical spectroscopy Triazine Triazines Ultraviolet filters Ultraviolet radiation UV absorbers Vacuum |
title | Molecular modeling for the investigation of UV absorbers for sunscreens: Triazine and benzotriazole derivatives |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A43%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20modeling%20for%20the%20investigation%20of%20UV%20absorbers%20for%20sunscreens:%20Triazine%20and%20benzotriazole%20derivatives&rft.jtitle=Journal%20of%20photochemistry%20and%20photobiology.%20A,%20Chemistry.&rft.au=Santos,%20Bianca%20A.M.C.&rft.date=2018-04-01&rft.volume=356&rft.spage=219&rft.epage=229&rft.pages=219-229&rft.issn=1010-6030&rft.eissn=1873-2666&rft_id=info:doi/10.1016/j.jphotochem.2017.12.036&rft_dat=%3Cproquest_cross%3E2064413239%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2064413239&rft_id=info:pmid/&rft_els_id=S1010603017314284&rfr_iscdi=true |