Molecular modeling for the investigation of UV absorbers for sunscreens: Triazine and benzotriazole derivatives

[Display omitted] •TDDFT reproduced accurately experimental UV absorption spectra.•Molecular orbitals involved in the dominant excitations are described.•Band gap energy, chemical potential and hardness are related to photoprotection. Investigations on the photoprotection mechanisms of molecular sun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of photochemistry and photobiology. A, Chemistry. Chemistry., 2018-04, Vol.356, p.219-229
Hauptverfasser: Santos, Bianca A.M.C., da Silva, Anne C.P., Bello, Murilo L., Gonçalves, Arlan S., Gouvêa, Thais A., Rodrigues, Rayane F., Cabral, Lucio M., Rodrigues, Carlos R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 229
container_issue
container_start_page 219
container_title Journal of photochemistry and photobiology. A, Chemistry.
container_volume 356
creator Santos, Bianca A.M.C.
da Silva, Anne C.P.
Bello, Murilo L.
Gonçalves, Arlan S.
Gouvêa, Thais A.
Rodrigues, Rayane F.
Cabral, Lucio M.
Rodrigues, Carlos R.
description [Display omitted] •TDDFT reproduced accurately experimental UV absorption spectra.•Molecular orbitals involved in the dominant excitations are described.•Band gap energy, chemical potential and hardness are related to photoprotection. Investigations on the photoprotection mechanisms of molecular sunscreens is critical to developing more efficacious sunscreen products. Molecular modeling has proved to be very helpful in understanding intrinsic properties of molecules that protect our skin from the harmful rays of the sun and gathering useful features to developing improved sunscreens. Herein the investigation focuses on the stereoelectronic properties related to photoprotection mechanisms of triazine and benzotriazole derivatives, important compound classes based on their physical-chemical properties, such as resonance and ultraviolet (UV) broad spectrum absorption (UVA and UVB). The method proved to be a valuable tool to reproduce the experimental UV absorption of a set of triazine and benzotriazole derivatives with compromise between the accuracy and the computational speed. All calculations were carried out considering only the isolated UV filter (in vacuum) and have provided a qualitative prediction and interpretation of absorption properties. The lowest band gap energy (Ebg), highest chemical potential (μ) and lowest chemical hardness (η) values were observed to the orthohydroxy substituted derivatives that are able to undergo excited-state proton transfer (ESPT), supporting the UVA absorption and resulting in excellent photostability.
doi_str_mv 10.1016/j.jphotochem.2017.12.036
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2064413239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1010603017314284</els_id><sourcerecordid>2064413239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-d718e67a97c3fbffc784f282a1f6520d6457ba37d080149a6f10918e993c810e3</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhCMEEqXwDpY4J6zt1Em4QcWfBOLScrUcZ906au1ip5Xo0-NSJI6cdrWa-VYzWUYoFBSouOmLfrP0g9dLXBcMaFVQVgAXJ9mI1hXPmRDiNO1AIRfA4Ty7iLEHgLIs6Sjzb36FertSgax9hyvrFsT4QIYlEut2GAe7UIP1jnhD5h9EtdGHFkP8UcWtizogunhLZsGqvXVIlOtIi27vh8Ml4UmHwe4SJeEuszOjVhGvfuc4mz8-zKbP-ev708v07jXXvBRD3lW0RlGpptLctMboqi4Nq5miRkwYdKKcVK3iVQc10LJRwlBokqVpuK4pIB9n10fuJvjPbYohe78NLr2UDESKzhlvkqo-qnTwMQY0chPsWoUvSUEe6pW9_KtXHuqVlMlUb7LeH62YUuwsBhm1RaexswH1IDtv_4d8AwFpiq8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2064413239</pqid></control><display><type>article</type><title>Molecular modeling for the investigation of UV absorbers for sunscreens: Triazine and benzotriazole derivatives</title><source>Elsevier ScienceDirect Journals</source><creator>Santos, Bianca A.M.C. ; da Silva, Anne C.P. ; Bello, Murilo L. ; Gonçalves, Arlan S. ; Gouvêa, Thais A. ; Rodrigues, Rayane F. ; Cabral, Lucio M. ; Rodrigues, Carlos R.</creator><creatorcontrib>Santos, Bianca A.M.C. ; da Silva, Anne C.P. ; Bello, Murilo L. ; Gonçalves, Arlan S. ; Gouvêa, Thais A. ; Rodrigues, Rayane F. ; Cabral, Lucio M. ; Rodrigues, Carlos R.</creatorcontrib><description>[Display omitted] •TDDFT reproduced accurately experimental UV absorption spectra.•Molecular orbitals involved in the dominant excitations are described.•Band gap energy, chemical potential and hardness are related to photoprotection. Investigations on the photoprotection mechanisms of molecular sunscreens is critical to developing more efficacious sunscreen products. Molecular modeling has proved to be very helpful in understanding intrinsic properties of molecules that protect our skin from the harmful rays of the sun and gathering useful features to developing improved sunscreens. Herein the investigation focuses on the stereoelectronic properties related to photoprotection mechanisms of triazine and benzotriazole derivatives, important compound classes based on their physical-chemical properties, such as resonance and ultraviolet (UV) broad spectrum absorption (UVA and UVB). The method proved to be a valuable tool to reproduce the experimental UV absorption of a set of triazine and benzotriazole derivatives with compromise between the accuracy and the computational speed. All calculations were carried out considering only the isolated UV filter (in vacuum) and have provided a qualitative prediction and interpretation of absorption properties. The lowest band gap energy (Ebg), highest chemical potential (μ) and lowest chemical hardness (η) values were observed to the orthohydroxy substituted derivatives that are able to undergo excited-state proton transfer (ESPT), supporting the UVA absorption and resulting in excellent photostability.</description><identifier>ISSN: 1010-6030</identifier><identifier>EISSN: 1873-2666</identifier><identifier>DOI: 10.1016/j.jphotochem.2017.12.036</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Absorption ; Benzotriazole ; Benzotriazoles ; Chemical potential ; Chemical properties ; Computer applications ; Derivatives ; Energy gap ; Molecular chains ; Molecular modeling ; Molecular modelling ; Organic chemistry ; Photochemistry ; Skin ; Sun screens ; Sunscreen ; Sunscreens ; Theoretical spectroscopy ; Triazine ; Triazines ; Ultraviolet filters ; Ultraviolet radiation ; UV absorbers ; Vacuum</subject><ispartof>Journal of photochemistry and photobiology. A, Chemistry., 2018-04, Vol.356, p.219-229</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV Apr 1, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-d718e67a97c3fbffc784f282a1f6520d6457ba37d080149a6f10918e993c810e3</citedby><cites>FETCH-LOGICAL-c346t-d718e67a97c3fbffc784f282a1f6520d6457ba37d080149a6f10918e993c810e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1010603017314284$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Santos, Bianca A.M.C.</creatorcontrib><creatorcontrib>da Silva, Anne C.P.</creatorcontrib><creatorcontrib>Bello, Murilo L.</creatorcontrib><creatorcontrib>Gonçalves, Arlan S.</creatorcontrib><creatorcontrib>Gouvêa, Thais A.</creatorcontrib><creatorcontrib>Rodrigues, Rayane F.</creatorcontrib><creatorcontrib>Cabral, Lucio M.</creatorcontrib><creatorcontrib>Rodrigues, Carlos R.</creatorcontrib><title>Molecular modeling for the investigation of UV absorbers for sunscreens: Triazine and benzotriazole derivatives</title><title>Journal of photochemistry and photobiology. A, Chemistry.</title><description>[Display omitted] •TDDFT reproduced accurately experimental UV absorption spectra.•Molecular orbitals involved in the dominant excitations are described.•Band gap energy, chemical potential and hardness are related to photoprotection. Investigations on the photoprotection mechanisms of molecular sunscreens is critical to developing more efficacious sunscreen products. Molecular modeling has proved to be very helpful in understanding intrinsic properties of molecules that protect our skin from the harmful rays of the sun and gathering useful features to developing improved sunscreens. Herein the investigation focuses on the stereoelectronic properties related to photoprotection mechanisms of triazine and benzotriazole derivatives, important compound classes based on their physical-chemical properties, such as resonance and ultraviolet (UV) broad spectrum absorption (UVA and UVB). The method proved to be a valuable tool to reproduce the experimental UV absorption of a set of triazine and benzotriazole derivatives with compromise between the accuracy and the computational speed. All calculations were carried out considering only the isolated UV filter (in vacuum) and have provided a qualitative prediction and interpretation of absorption properties. The lowest band gap energy (Ebg), highest chemical potential (μ) and lowest chemical hardness (η) values were observed to the orthohydroxy substituted derivatives that are able to undergo excited-state proton transfer (ESPT), supporting the UVA absorption and resulting in excellent photostability.</description><subject>Absorption</subject><subject>Benzotriazole</subject><subject>Benzotriazoles</subject><subject>Chemical potential</subject><subject>Chemical properties</subject><subject>Computer applications</subject><subject>Derivatives</subject><subject>Energy gap</subject><subject>Molecular chains</subject><subject>Molecular modeling</subject><subject>Molecular modelling</subject><subject>Organic chemistry</subject><subject>Photochemistry</subject><subject>Skin</subject><subject>Sun screens</subject><subject>Sunscreen</subject><subject>Sunscreens</subject><subject>Theoretical spectroscopy</subject><subject>Triazine</subject><subject>Triazines</subject><subject>Ultraviolet filters</subject><subject>Ultraviolet radiation</subject><subject>UV absorbers</subject><subject>Vacuum</subject><issn>1010-6030</issn><issn>1873-2666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhCMEEqXwDpY4J6zt1Em4QcWfBOLScrUcZ906au1ip5Xo0-NSJI6cdrWa-VYzWUYoFBSouOmLfrP0g9dLXBcMaFVQVgAXJ9mI1hXPmRDiNO1AIRfA4Ty7iLEHgLIs6Sjzb36FertSgax9hyvrFsT4QIYlEut2GAe7UIP1jnhD5h9EtdGHFkP8UcWtizogunhLZsGqvXVIlOtIi27vh8Ml4UmHwe4SJeEuszOjVhGvfuc4mz8-zKbP-ev708v07jXXvBRD3lW0RlGpptLctMboqi4Nq5miRkwYdKKcVK3iVQc10LJRwlBokqVpuK4pIB9n10fuJvjPbYohe78NLr2UDESKzhlvkqo-qnTwMQY0chPsWoUvSUEe6pW9_KtXHuqVlMlUb7LeH62YUuwsBhm1RaexswH1IDtv_4d8AwFpiq8</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Santos, Bianca A.M.C.</creator><creator>da Silva, Anne C.P.</creator><creator>Bello, Murilo L.</creator><creator>Gonçalves, Arlan S.</creator><creator>Gouvêa, Thais A.</creator><creator>Rodrigues, Rayane F.</creator><creator>Cabral, Lucio M.</creator><creator>Rodrigues, Carlos R.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>20180401</creationdate><title>Molecular modeling for the investigation of UV absorbers for sunscreens: Triazine and benzotriazole derivatives</title><author>Santos, Bianca A.M.C. ; da Silva, Anne C.P. ; Bello, Murilo L. ; Gonçalves, Arlan S. ; Gouvêa, Thais A. ; Rodrigues, Rayane F. ; Cabral, Lucio M. ; Rodrigues, Carlos R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-d718e67a97c3fbffc784f282a1f6520d6457ba37d080149a6f10918e993c810e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Absorption</topic><topic>Benzotriazole</topic><topic>Benzotriazoles</topic><topic>Chemical potential</topic><topic>Chemical properties</topic><topic>Computer applications</topic><topic>Derivatives</topic><topic>Energy gap</topic><topic>Molecular chains</topic><topic>Molecular modeling</topic><topic>Molecular modelling</topic><topic>Organic chemistry</topic><topic>Photochemistry</topic><topic>Skin</topic><topic>Sun screens</topic><topic>Sunscreen</topic><topic>Sunscreens</topic><topic>Theoretical spectroscopy</topic><topic>Triazine</topic><topic>Triazines</topic><topic>Ultraviolet filters</topic><topic>Ultraviolet radiation</topic><topic>UV absorbers</topic><topic>Vacuum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santos, Bianca A.M.C.</creatorcontrib><creatorcontrib>da Silva, Anne C.P.</creatorcontrib><creatorcontrib>Bello, Murilo L.</creatorcontrib><creatorcontrib>Gonçalves, Arlan S.</creatorcontrib><creatorcontrib>Gouvêa, Thais A.</creatorcontrib><creatorcontrib>Rodrigues, Rayane F.</creatorcontrib><creatorcontrib>Cabral, Lucio M.</creatorcontrib><creatorcontrib>Rodrigues, Carlos R.</creatorcontrib><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of photochemistry and photobiology. A, Chemistry.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santos, Bianca A.M.C.</au><au>da Silva, Anne C.P.</au><au>Bello, Murilo L.</au><au>Gonçalves, Arlan S.</au><au>Gouvêa, Thais A.</au><au>Rodrigues, Rayane F.</au><au>Cabral, Lucio M.</au><au>Rodrigues, Carlos R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular modeling for the investigation of UV absorbers for sunscreens: Triazine and benzotriazole derivatives</atitle><jtitle>Journal of photochemistry and photobiology. A, Chemistry.</jtitle><date>2018-04-01</date><risdate>2018</risdate><volume>356</volume><spage>219</spage><epage>229</epage><pages>219-229</pages><issn>1010-6030</issn><eissn>1873-2666</eissn><abstract>[Display omitted] •TDDFT reproduced accurately experimental UV absorption spectra.•Molecular orbitals involved in the dominant excitations are described.•Band gap energy, chemical potential and hardness are related to photoprotection. Investigations on the photoprotection mechanisms of molecular sunscreens is critical to developing more efficacious sunscreen products. Molecular modeling has proved to be very helpful in understanding intrinsic properties of molecules that protect our skin from the harmful rays of the sun and gathering useful features to developing improved sunscreens. Herein the investigation focuses on the stereoelectronic properties related to photoprotection mechanisms of triazine and benzotriazole derivatives, important compound classes based on their physical-chemical properties, such as resonance and ultraviolet (UV) broad spectrum absorption (UVA and UVB). The method proved to be a valuable tool to reproduce the experimental UV absorption of a set of triazine and benzotriazole derivatives with compromise between the accuracy and the computational speed. All calculations were carried out considering only the isolated UV filter (in vacuum) and have provided a qualitative prediction and interpretation of absorption properties. The lowest band gap energy (Ebg), highest chemical potential (μ) and lowest chemical hardness (η) values were observed to the orthohydroxy substituted derivatives that are able to undergo excited-state proton transfer (ESPT), supporting the UVA absorption and resulting in excellent photostability.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jphotochem.2017.12.036</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1010-6030
ispartof Journal of photochemistry and photobiology. A, Chemistry., 2018-04, Vol.356, p.219-229
issn 1010-6030
1873-2666
language eng
recordid cdi_proquest_journals_2064413239
source Elsevier ScienceDirect Journals
subjects Absorption
Benzotriazole
Benzotriazoles
Chemical potential
Chemical properties
Computer applications
Derivatives
Energy gap
Molecular chains
Molecular modeling
Molecular modelling
Organic chemistry
Photochemistry
Skin
Sun screens
Sunscreen
Sunscreens
Theoretical spectroscopy
Triazine
Triazines
Ultraviolet filters
Ultraviolet radiation
UV absorbers
Vacuum
title Molecular modeling for the investigation of UV absorbers for sunscreens: Triazine and benzotriazole derivatives
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A43%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20modeling%20for%20the%20investigation%20of%20UV%20absorbers%20for%20sunscreens:%20Triazine%20and%20benzotriazole%20derivatives&rft.jtitle=Journal%20of%20photochemistry%20and%20photobiology.%20A,%20Chemistry.&rft.au=Santos,%20Bianca%20A.M.C.&rft.date=2018-04-01&rft.volume=356&rft.spage=219&rft.epage=229&rft.pages=219-229&rft.issn=1010-6030&rft.eissn=1873-2666&rft_id=info:doi/10.1016/j.jphotochem.2017.12.036&rft_dat=%3Cproquest_cross%3E2064413239%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2064413239&rft_id=info:pmid/&rft_els_id=S1010603017314284&rfr_iscdi=true