Injection of A Hydrate-Forming Gas into A Snow Layer Saturated with the Same Gas
The problem of injection of a hydrate-forming gas (methane) into a snow layer whose pores are initially saturated with the same gas is solved. Self-similar solutions describing the temperature and pressure fields and the snow, hydrate, and gas distributions in the layer are constructed. It is shown...
Gespeichert in:
Veröffentlicht in: | Journal of applied mechanics and technical physics 2018, Vol.59 (3), p.422-433 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 433 |
---|---|
container_issue | 3 |
container_start_page | 422 |
container_title | Journal of applied mechanics and technical physics |
container_volume | 59 |
creator | Shagapov, V. Sh Chiglintseva, A. S. Rusinov, A. A. Khasanov, M. K. Khusainov, I. G. |
description | The problem of injection of a hydrate-forming gas (methane) into a snow layer whose pores are initially saturated with the same gas is solved. Self-similar solutions describing the temperature and pressure fields and the snow, hydrate, and gas distributions in the layer are constructed. It is shown that, depending on the initial thermobaric state of the snow–methane system and the rate of gas injection, three characteristic zones can be distinguished in the filtration region: a near zone, in which snow is completely converted into hydrate and, consequently, the hydrate layer is saturated with gas; an intermediate zone, in which gas, snow, and hydrate are in phase equilibrium; far zone filled with gas and snow. It is shown that the length of the heated zone decreases with increasing initial snow content in the layer and with decreasing injected gas pressure. It is also shown that the length of the region of hydrate formation increases with increasing permeability. It is noted that the heating of the intermediate zone occurs more rapidly. |
doi_str_mv | 10.1134/S0021894418030057 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2064318820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2064318820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-77ca92dfcc4591604b009d90450fc1500627ea8eb26eb69dab8f9edf0d2ad643</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWB8_wF3A9ehNJpNJlqXYBxQU2v2QyaOdYic1SSn992ao4EJcXbjnO-deDkJPBF4IKdnrCoASIRkjAkqAqr5CI1LVZSE4hWs0GuRi0G_RXYw7AJCC1CP0seh3VqfO99g7PMbzswkq2WLqw77rN3imIu765LO06v0JL9XZBrxS6ThgBp-6tMVpa_Nqbwf6Ad049Rnt48-8R-vp23oyL5bvs8VkvCx0SXgq6lorSY3TmlWScGBt_shIYBU4TSoATmurhG0pty2XRrXCSWscGKoMZ-U9er7EHoL_OtqYmp0_hj5fbChknQhBIVPkQungYwzWNYfQ7VU4NwSaobfmT2_ZQy-emNl-Y8Nv8v-mb2wXbVE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2064318820</pqid></control><display><type>article</type><title>Injection of A Hydrate-Forming Gas into A Snow Layer Saturated with the Same Gas</title><source>Springer Online Journals Complete</source><creator>Shagapov, V. Sh ; Chiglintseva, A. S. ; Rusinov, A. A. ; Khasanov, M. K. ; Khusainov, I. G.</creator><creatorcontrib>Shagapov, V. Sh ; Chiglintseva, A. S. ; Rusinov, A. A. ; Khasanov, M. K. ; Khusainov, I. G.</creatorcontrib><description>The problem of injection of a hydrate-forming gas (methane) into a snow layer whose pores are initially saturated with the same gas is solved. Self-similar solutions describing the temperature and pressure fields and the snow, hydrate, and gas distributions in the layer are constructed. It is shown that, depending on the initial thermobaric state of the snow–methane system and the rate of gas injection, three characteristic zones can be distinguished in the filtration region: a near zone, in which snow is completely converted into hydrate and, consequently, the hydrate layer is saturated with gas; an intermediate zone, in which gas, snow, and hydrate are in phase equilibrium; far zone filled with gas and snow. It is shown that the length of the heated zone decreases with increasing initial snow content in the layer and with decreasing injected gas pressure. It is also shown that the length of the region of hydrate formation increases with increasing permeability. It is noted that the heating of the intermediate zone occurs more rapidly.</description><identifier>ISSN: 0021-8944</identifier><identifier>EISSN: 1573-8620</identifier><identifier>DOI: 10.1134/S0021894418030057</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Applications of Mathematics ; Classical and Continuum Physics ; Classical Mechanics ; Fluid- and Aerodynamics ; Forming ; Gas injection ; Gas pressure ; Mathematical Modeling and Industrial Mathematics ; Mechanical Engineering ; Methane ; Phase equilibria ; Physics ; Physics and Astronomy ; Self-similarity ; Snow</subject><ispartof>Journal of applied mechanics and technical physics, 2018, Vol.59 (3), p.422-433</ispartof><rights>Pleiades Publishing, Ltd. 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-77ca92dfcc4591604b009d90450fc1500627ea8eb26eb69dab8f9edf0d2ad643</citedby><cites>FETCH-LOGICAL-c316t-77ca92dfcc4591604b009d90450fc1500627ea8eb26eb69dab8f9edf0d2ad643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0021894418030057$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0021894418030057$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Shagapov, V. Sh</creatorcontrib><creatorcontrib>Chiglintseva, A. S.</creatorcontrib><creatorcontrib>Rusinov, A. A.</creatorcontrib><creatorcontrib>Khasanov, M. K.</creatorcontrib><creatorcontrib>Khusainov, I. G.</creatorcontrib><title>Injection of A Hydrate-Forming Gas into A Snow Layer Saturated with the Same Gas</title><title>Journal of applied mechanics and technical physics</title><addtitle>J Appl Mech Tech Phy</addtitle><description>The problem of injection of a hydrate-forming gas (methane) into a snow layer whose pores are initially saturated with the same gas is solved. Self-similar solutions describing the temperature and pressure fields and the snow, hydrate, and gas distributions in the layer are constructed. It is shown that, depending on the initial thermobaric state of the snow–methane system and the rate of gas injection, three characteristic zones can be distinguished in the filtration region: a near zone, in which snow is completely converted into hydrate and, consequently, the hydrate layer is saturated with gas; an intermediate zone, in which gas, snow, and hydrate are in phase equilibrium; far zone filled with gas and snow. It is shown that the length of the heated zone decreases with increasing initial snow content in the layer and with decreasing injected gas pressure. It is also shown that the length of the region of hydrate formation increases with increasing permeability. It is noted that the heating of the intermediate zone occurs more rapidly.</description><subject>Applications of Mathematics</subject><subject>Classical and Continuum Physics</subject><subject>Classical Mechanics</subject><subject>Fluid- and Aerodynamics</subject><subject>Forming</subject><subject>Gas injection</subject><subject>Gas pressure</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mechanical Engineering</subject><subject>Methane</subject><subject>Phase equilibria</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Self-similarity</subject><subject>Snow</subject><issn>0021-8944</issn><issn>1573-8620</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWB8_wF3A9ehNJpNJlqXYBxQU2v2QyaOdYic1SSn992ao4EJcXbjnO-deDkJPBF4IKdnrCoASIRkjAkqAqr5CI1LVZSE4hWs0GuRi0G_RXYw7AJCC1CP0seh3VqfO99g7PMbzswkq2WLqw77rN3imIu765LO06v0JL9XZBrxS6ThgBp-6tMVpa_Nqbwf6Ad049Rnt48-8R-vp23oyL5bvs8VkvCx0SXgq6lorSY3TmlWScGBt_shIYBU4TSoATmurhG0pty2XRrXCSWscGKoMZ-U9er7EHoL_OtqYmp0_hj5fbChknQhBIVPkQungYwzWNYfQ7VU4NwSaobfmT2_ZQy-emNl-Y8Nv8v-mb2wXbVE</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Shagapov, V. Sh</creator><creator>Chiglintseva, A. S.</creator><creator>Rusinov, A. A.</creator><creator>Khasanov, M. K.</creator><creator>Khusainov, I. G.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2018</creationdate><title>Injection of A Hydrate-Forming Gas into A Snow Layer Saturated with the Same Gas</title><author>Shagapov, V. Sh ; Chiglintseva, A. S. ; Rusinov, A. A. ; Khasanov, M. K. ; Khusainov, I. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-77ca92dfcc4591604b009d90450fc1500627ea8eb26eb69dab8f9edf0d2ad643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applications of Mathematics</topic><topic>Classical and Continuum Physics</topic><topic>Classical Mechanics</topic><topic>Fluid- and Aerodynamics</topic><topic>Forming</topic><topic>Gas injection</topic><topic>Gas pressure</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mechanical Engineering</topic><topic>Methane</topic><topic>Phase equilibria</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Self-similarity</topic><topic>Snow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shagapov, V. Sh</creatorcontrib><creatorcontrib>Chiglintseva, A. S.</creatorcontrib><creatorcontrib>Rusinov, A. A.</creatorcontrib><creatorcontrib>Khasanov, M. K.</creatorcontrib><creatorcontrib>Khusainov, I. G.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied mechanics and technical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shagapov, V. Sh</au><au>Chiglintseva, A. S.</au><au>Rusinov, A. A.</au><au>Khasanov, M. K.</au><au>Khusainov, I. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Injection of A Hydrate-Forming Gas into A Snow Layer Saturated with the Same Gas</atitle><jtitle>Journal of applied mechanics and technical physics</jtitle><stitle>J Appl Mech Tech Phy</stitle><date>2018</date><risdate>2018</risdate><volume>59</volume><issue>3</issue><spage>422</spage><epage>433</epage><pages>422-433</pages><issn>0021-8944</issn><eissn>1573-8620</eissn><abstract>The problem of injection of a hydrate-forming gas (methane) into a snow layer whose pores are initially saturated with the same gas is solved. Self-similar solutions describing the temperature and pressure fields and the snow, hydrate, and gas distributions in the layer are constructed. It is shown that, depending on the initial thermobaric state of the snow–methane system and the rate of gas injection, three characteristic zones can be distinguished in the filtration region: a near zone, in which snow is completely converted into hydrate and, consequently, the hydrate layer is saturated with gas; an intermediate zone, in which gas, snow, and hydrate are in phase equilibrium; far zone filled with gas and snow. It is shown that the length of the heated zone decreases with increasing initial snow content in the layer and with decreasing injected gas pressure. It is also shown that the length of the region of hydrate formation increases with increasing permeability. It is noted that the heating of the intermediate zone occurs more rapidly.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0021894418030057</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8944 |
ispartof | Journal of applied mechanics and technical physics, 2018, Vol.59 (3), p.422-433 |
issn | 0021-8944 1573-8620 |
language | eng |
recordid | cdi_proquest_journals_2064318820 |
source | Springer Online Journals Complete |
subjects | Applications of Mathematics Classical and Continuum Physics Classical Mechanics Fluid- and Aerodynamics Forming Gas injection Gas pressure Mathematical Modeling and Industrial Mathematics Mechanical Engineering Methane Phase equilibria Physics Physics and Astronomy Self-similarity Snow |
title | Injection of A Hydrate-Forming Gas into A Snow Layer Saturated with the Same Gas |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T22%3A09%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Injection%20of%20A%20Hydrate-Forming%20Gas%20into%20A%20Snow%20Layer%20Saturated%20with%20the%20Same%20Gas&rft.jtitle=Journal%20of%20applied%20mechanics%20and%20technical%20physics&rft.au=Shagapov,%20V.%20Sh&rft.date=2018&rft.volume=59&rft.issue=3&rft.spage=422&rft.epage=433&rft.pages=422-433&rft.issn=0021-8944&rft.eissn=1573-8620&rft_id=info:doi/10.1134/S0021894418030057&rft_dat=%3Cproquest_cross%3E2064318820%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2064318820&rft_id=info:pmid/&rfr_iscdi=true |