Injection of A Hydrate-Forming Gas into A Snow Layer Saturated with the Same Gas

The problem of injection of a hydrate-forming gas (methane) into a snow layer whose pores are initially saturated with the same gas is solved. Self-similar solutions describing the temperature and pressure fields and the snow, hydrate, and gas distributions in the layer are constructed. It is shown...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mechanics and technical physics 2018, Vol.59 (3), p.422-433
Hauptverfasser: Shagapov, V. Sh, Chiglintseva, A. S., Rusinov, A. A., Khasanov, M. K., Khusainov, I. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 433
container_issue 3
container_start_page 422
container_title Journal of applied mechanics and technical physics
container_volume 59
creator Shagapov, V. Sh
Chiglintseva, A. S.
Rusinov, A. A.
Khasanov, M. K.
Khusainov, I. G.
description The problem of injection of a hydrate-forming gas (methane) into a snow layer whose pores are initially saturated with the same gas is solved. Self-similar solutions describing the temperature and pressure fields and the snow, hydrate, and gas distributions in the layer are constructed. It is shown that, depending on the initial thermobaric state of the snow–methane system and the rate of gas injection, three characteristic zones can be distinguished in the filtration region: a near zone, in which snow is completely converted into hydrate and, consequently, the hydrate layer is saturated with gas; an intermediate zone, in which gas, snow, and hydrate are in phase equilibrium; far zone filled with gas and snow. It is shown that the length of the heated zone decreases with increasing initial snow content in the layer and with decreasing injected gas pressure. It is also shown that the length of the region of hydrate formation increases with increasing permeability. It is noted that the heating of the intermediate zone occurs more rapidly.
doi_str_mv 10.1134/S0021894418030057
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2064318820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2064318820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-77ca92dfcc4591604b009d90450fc1500627ea8eb26eb69dab8f9edf0d2ad643</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWB8_wF3A9ehNJpNJlqXYBxQU2v2QyaOdYic1SSn992ao4EJcXbjnO-deDkJPBF4IKdnrCoASIRkjAkqAqr5CI1LVZSE4hWs0GuRi0G_RXYw7AJCC1CP0seh3VqfO99g7PMbzswkq2WLqw77rN3imIu765LO06v0JL9XZBrxS6ThgBp-6tMVpa_Nqbwf6Ad049Rnt48-8R-vp23oyL5bvs8VkvCx0SXgq6lorSY3TmlWScGBt_shIYBU4TSoATmurhG0pty2XRrXCSWscGKoMZ-U9er7EHoL_OtqYmp0_hj5fbChknQhBIVPkQungYwzWNYfQ7VU4NwSaobfmT2_ZQy-emNl-Y8Nv8v-mb2wXbVE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2064318820</pqid></control><display><type>article</type><title>Injection of A Hydrate-Forming Gas into A Snow Layer Saturated with the Same Gas</title><source>Springer Online Journals Complete</source><creator>Shagapov, V. Sh ; Chiglintseva, A. S. ; Rusinov, A. A. ; Khasanov, M. K. ; Khusainov, I. G.</creator><creatorcontrib>Shagapov, V. Sh ; Chiglintseva, A. S. ; Rusinov, A. A. ; Khasanov, M. K. ; Khusainov, I. G.</creatorcontrib><description>The problem of injection of a hydrate-forming gas (methane) into a snow layer whose pores are initially saturated with the same gas is solved. Self-similar solutions describing the temperature and pressure fields and the snow, hydrate, and gas distributions in the layer are constructed. It is shown that, depending on the initial thermobaric state of the snow–methane system and the rate of gas injection, three characteristic zones can be distinguished in the filtration region: a near zone, in which snow is completely converted into hydrate and, consequently, the hydrate layer is saturated with gas; an intermediate zone, in which gas, snow, and hydrate are in phase equilibrium; far zone filled with gas and snow. It is shown that the length of the heated zone decreases with increasing initial snow content in the layer and with decreasing injected gas pressure. It is also shown that the length of the region of hydrate formation increases with increasing permeability. It is noted that the heating of the intermediate zone occurs more rapidly.</description><identifier>ISSN: 0021-8944</identifier><identifier>EISSN: 1573-8620</identifier><identifier>DOI: 10.1134/S0021894418030057</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Applications of Mathematics ; Classical and Continuum Physics ; Classical Mechanics ; Fluid- and Aerodynamics ; Forming ; Gas injection ; Gas pressure ; Mathematical Modeling and Industrial Mathematics ; Mechanical Engineering ; Methane ; Phase equilibria ; Physics ; Physics and Astronomy ; Self-similarity ; Snow</subject><ispartof>Journal of applied mechanics and technical physics, 2018, Vol.59 (3), p.422-433</ispartof><rights>Pleiades Publishing, Ltd. 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-77ca92dfcc4591604b009d90450fc1500627ea8eb26eb69dab8f9edf0d2ad643</citedby><cites>FETCH-LOGICAL-c316t-77ca92dfcc4591604b009d90450fc1500627ea8eb26eb69dab8f9edf0d2ad643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0021894418030057$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0021894418030057$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Shagapov, V. Sh</creatorcontrib><creatorcontrib>Chiglintseva, A. S.</creatorcontrib><creatorcontrib>Rusinov, A. A.</creatorcontrib><creatorcontrib>Khasanov, M. K.</creatorcontrib><creatorcontrib>Khusainov, I. G.</creatorcontrib><title>Injection of A Hydrate-Forming Gas into A Snow Layer Saturated with the Same Gas</title><title>Journal of applied mechanics and technical physics</title><addtitle>J Appl Mech Tech Phy</addtitle><description>The problem of injection of a hydrate-forming gas (methane) into a snow layer whose pores are initially saturated with the same gas is solved. Self-similar solutions describing the temperature and pressure fields and the snow, hydrate, and gas distributions in the layer are constructed. It is shown that, depending on the initial thermobaric state of the snow–methane system and the rate of gas injection, three characteristic zones can be distinguished in the filtration region: a near zone, in which snow is completely converted into hydrate and, consequently, the hydrate layer is saturated with gas; an intermediate zone, in which gas, snow, and hydrate are in phase equilibrium; far zone filled with gas and snow. It is shown that the length of the heated zone decreases with increasing initial snow content in the layer and with decreasing injected gas pressure. It is also shown that the length of the region of hydrate formation increases with increasing permeability. It is noted that the heating of the intermediate zone occurs more rapidly.</description><subject>Applications of Mathematics</subject><subject>Classical and Continuum Physics</subject><subject>Classical Mechanics</subject><subject>Fluid- and Aerodynamics</subject><subject>Forming</subject><subject>Gas injection</subject><subject>Gas pressure</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mechanical Engineering</subject><subject>Methane</subject><subject>Phase equilibria</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Self-similarity</subject><subject>Snow</subject><issn>0021-8944</issn><issn>1573-8620</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWB8_wF3A9ehNJpNJlqXYBxQU2v2QyaOdYic1SSn992ao4EJcXbjnO-deDkJPBF4IKdnrCoASIRkjAkqAqr5CI1LVZSE4hWs0GuRi0G_RXYw7AJCC1CP0seh3VqfO99g7PMbzswkq2WLqw77rN3imIu765LO06v0JL9XZBrxS6ThgBp-6tMVpa_Nqbwf6Ad049Rnt48-8R-vp23oyL5bvs8VkvCx0SXgq6lorSY3TmlWScGBt_shIYBU4TSoATmurhG0pty2XRrXCSWscGKoMZ-U9er7EHoL_OtqYmp0_hj5fbChknQhBIVPkQungYwzWNYfQ7VU4NwSaobfmT2_ZQy-emNl-Y8Nv8v-mb2wXbVE</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Shagapov, V. Sh</creator><creator>Chiglintseva, A. S.</creator><creator>Rusinov, A. A.</creator><creator>Khasanov, M. K.</creator><creator>Khusainov, I. G.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2018</creationdate><title>Injection of A Hydrate-Forming Gas into A Snow Layer Saturated with the Same Gas</title><author>Shagapov, V. Sh ; Chiglintseva, A. S. ; Rusinov, A. A. ; Khasanov, M. K. ; Khusainov, I. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-77ca92dfcc4591604b009d90450fc1500627ea8eb26eb69dab8f9edf0d2ad643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applications of Mathematics</topic><topic>Classical and Continuum Physics</topic><topic>Classical Mechanics</topic><topic>Fluid- and Aerodynamics</topic><topic>Forming</topic><topic>Gas injection</topic><topic>Gas pressure</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mechanical Engineering</topic><topic>Methane</topic><topic>Phase equilibria</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Self-similarity</topic><topic>Snow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shagapov, V. Sh</creatorcontrib><creatorcontrib>Chiglintseva, A. S.</creatorcontrib><creatorcontrib>Rusinov, A. A.</creatorcontrib><creatorcontrib>Khasanov, M. K.</creatorcontrib><creatorcontrib>Khusainov, I. G.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied mechanics and technical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shagapov, V. Sh</au><au>Chiglintseva, A. S.</au><au>Rusinov, A. A.</au><au>Khasanov, M. K.</au><au>Khusainov, I. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Injection of A Hydrate-Forming Gas into A Snow Layer Saturated with the Same Gas</atitle><jtitle>Journal of applied mechanics and technical physics</jtitle><stitle>J Appl Mech Tech Phy</stitle><date>2018</date><risdate>2018</risdate><volume>59</volume><issue>3</issue><spage>422</spage><epage>433</epage><pages>422-433</pages><issn>0021-8944</issn><eissn>1573-8620</eissn><abstract>The problem of injection of a hydrate-forming gas (methane) into a snow layer whose pores are initially saturated with the same gas is solved. Self-similar solutions describing the temperature and pressure fields and the snow, hydrate, and gas distributions in the layer are constructed. It is shown that, depending on the initial thermobaric state of the snow–methane system and the rate of gas injection, three characteristic zones can be distinguished in the filtration region: a near zone, in which snow is completely converted into hydrate and, consequently, the hydrate layer is saturated with gas; an intermediate zone, in which gas, snow, and hydrate are in phase equilibrium; far zone filled with gas and snow. It is shown that the length of the heated zone decreases with increasing initial snow content in the layer and with decreasing injected gas pressure. It is also shown that the length of the region of hydrate formation increases with increasing permeability. It is noted that the heating of the intermediate zone occurs more rapidly.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0021894418030057</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8944
ispartof Journal of applied mechanics and technical physics, 2018, Vol.59 (3), p.422-433
issn 0021-8944
1573-8620
language eng
recordid cdi_proquest_journals_2064318820
source Springer Online Journals Complete
subjects Applications of Mathematics
Classical and Continuum Physics
Classical Mechanics
Fluid- and Aerodynamics
Forming
Gas injection
Gas pressure
Mathematical Modeling and Industrial Mathematics
Mechanical Engineering
Methane
Phase equilibria
Physics
Physics and Astronomy
Self-similarity
Snow
title Injection of A Hydrate-Forming Gas into A Snow Layer Saturated with the Same Gas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T22%3A09%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Injection%20of%20A%20Hydrate-Forming%20Gas%20into%20A%20Snow%20Layer%20Saturated%20with%20the%20Same%20Gas&rft.jtitle=Journal%20of%20applied%20mechanics%20and%20technical%20physics&rft.au=Shagapov,%20V.%20Sh&rft.date=2018&rft.volume=59&rft.issue=3&rft.spage=422&rft.epage=433&rft.pages=422-433&rft.issn=0021-8944&rft.eissn=1573-8620&rft_id=info:doi/10.1134/S0021894418030057&rft_dat=%3Cproquest_cross%3E2064318820%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2064318820&rft_id=info:pmid/&rfr_iscdi=true