Guest Editorial Deep Learning Models for Industry Informatics

The papers in this special issue mainly focus on deep learning models for industry informatics, addressing both original algorithmic development and new applications of deep learning.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2018-07, Vol.14 (7), p.3166-3169
Hauptverfasser: Agrawal, Dharma Prakash, Gupta, Brij Bhooshan, Wang, Haoxiang, Chang, Xiaojun, Yamaguchi, Shingo, Perez, Gregorio Martinez
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3169
container_issue 7
container_start_page 3166
container_title IEEE transactions on industrial informatics
container_volume 14
creator Agrawal, Dharma Prakash
Gupta, Brij Bhooshan
Wang, Haoxiang
Chang, Xiaojun
Yamaguchi, Shingo
Perez, Gregorio Martinez
description The papers in this special issue mainly focus on deep learning models for industry informatics, addressing both original algorithmic development and new applications of deep learning.
doi_str_mv 10.1109/TII.2018.2834547
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2064312845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8402153</ieee_id><sourcerecordid>2064312845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-885de2f584fedde1a2cd40392352073fc2e114b0b015476ea2829282cfc2f4e33</originalsourceid><addsrcrecordid>eNo9UMFOAjEQbYwmIno38bKJ58WZTgvdgweDgJtgvOC5KbtTswR2sV0O_L0lEA-Tmcm8N-_lCfGIMEKE4mVVliMJaEbSkNJqciUGWCjMATRcp1lrzEkC3Yq7GDcANAEqBuJ1ceDYZ7O66bvQuG32zrzPluxC27Q_2WdX8zZmvgtZ2daH2IdjGtK6c31TxXtx49028sOlD8X3fLaafuTLr0U5fVvmFRH1uTG6Zum1UZ7rmtHJqlZJXpKWMCFfSUZUa1gDJudjdtLIIlWVLl4x0VA8n__uQ_d7Mmw33SG0SdJKGCtCaZROKDijqtDFGNjbfWh2Lhwtgj2FZFNI9hSSvYSUKE9nSsPM_3CjQKIm-gPp2mFK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2064312845</pqid></control><display><type>article</type><title>Guest Editorial Deep Learning Models for Industry Informatics</title><source>IEEE Electronic Library (IEL)</source><creator>Agrawal, Dharma Prakash ; Gupta, Brij Bhooshan ; Wang, Haoxiang ; Chang, Xiaojun ; Yamaguchi, Shingo ; Perez, Gregorio Martinez</creator><creatorcontrib>Agrawal, Dharma Prakash ; Gupta, Brij Bhooshan ; Wang, Haoxiang ; Chang, Xiaojun ; Yamaguchi, Shingo ; Perez, Gregorio Martinez</creatorcontrib><description>The papers in this special issue mainly focus on deep learning models for industry informatics, addressing both original algorithmic development and new applications of deep learning.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2018.2834547</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Computational modeling ; Computer vision ; Feature extraction ; Industrial control ; Informatics ; Learning systems ; Machine learning ; Malware ; Predictive models ; Special issues and sections</subject><ispartof>IEEE transactions on industrial informatics, 2018-07, Vol.14 (7), p.3166-3169</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-885de2f584fedde1a2cd40392352073fc2e114b0b015476ea2829282cfc2f4e33</citedby><cites>FETCH-LOGICAL-c333t-885de2f584fedde1a2cd40392352073fc2e114b0b015476ea2829282cfc2f4e33</cites><orcidid>0000-0002-7778-8807 ; 0000-0003-4929-4698 ; 0000-0001-5532-6604 ; 0000-0003-0579-8501</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8402153$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8402153$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Agrawal, Dharma Prakash</creatorcontrib><creatorcontrib>Gupta, Brij Bhooshan</creatorcontrib><creatorcontrib>Wang, Haoxiang</creatorcontrib><creatorcontrib>Chang, Xiaojun</creatorcontrib><creatorcontrib>Yamaguchi, Shingo</creatorcontrib><creatorcontrib>Perez, Gregorio Martinez</creatorcontrib><title>Guest Editorial Deep Learning Models for Industry Informatics</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>The papers in this special issue mainly focus on deep learning models for industry informatics, addressing both original algorithmic development and new applications of deep learning.</description><subject>Computational modeling</subject><subject>Computer vision</subject><subject>Feature extraction</subject><subject>Industrial control</subject><subject>Informatics</subject><subject>Learning systems</subject><subject>Machine learning</subject><subject>Malware</subject><subject>Predictive models</subject><subject>Special issues and sections</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UMFOAjEQbYwmIno38bKJ58WZTgvdgweDgJtgvOC5KbtTswR2sV0O_L0lEA-Tmcm8N-_lCfGIMEKE4mVVliMJaEbSkNJqciUGWCjMATRcp1lrzEkC3Yq7GDcANAEqBuJ1ceDYZ7O66bvQuG32zrzPluxC27Q_2WdX8zZmvgtZ2daH2IdjGtK6c31TxXtx49028sOlD8X3fLaafuTLr0U5fVvmFRH1uTG6Zum1UZ7rmtHJqlZJXpKWMCFfSUZUa1gDJudjdtLIIlWVLl4x0VA8n__uQ_d7Mmw33SG0SdJKGCtCaZROKDijqtDFGNjbfWh2Lhwtgj2FZFNI9hSSvYSUKE9nSsPM_3CjQKIm-gPp2mFK</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Agrawal, Dharma Prakash</creator><creator>Gupta, Brij Bhooshan</creator><creator>Wang, Haoxiang</creator><creator>Chang, Xiaojun</creator><creator>Yamaguchi, Shingo</creator><creator>Perez, Gregorio Martinez</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7778-8807</orcidid><orcidid>https://orcid.org/0000-0003-4929-4698</orcidid><orcidid>https://orcid.org/0000-0001-5532-6604</orcidid><orcidid>https://orcid.org/0000-0003-0579-8501</orcidid></search><sort><creationdate>20180701</creationdate><title>Guest Editorial Deep Learning Models for Industry Informatics</title><author>Agrawal, Dharma Prakash ; Gupta, Brij Bhooshan ; Wang, Haoxiang ; Chang, Xiaojun ; Yamaguchi, Shingo ; Perez, Gregorio Martinez</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-885de2f584fedde1a2cd40392352073fc2e114b0b015476ea2829282cfc2f4e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computational modeling</topic><topic>Computer vision</topic><topic>Feature extraction</topic><topic>Industrial control</topic><topic>Informatics</topic><topic>Learning systems</topic><topic>Machine learning</topic><topic>Malware</topic><topic>Predictive models</topic><topic>Special issues and sections</topic><toplevel>online_resources</toplevel><creatorcontrib>Agrawal, Dharma Prakash</creatorcontrib><creatorcontrib>Gupta, Brij Bhooshan</creatorcontrib><creatorcontrib>Wang, Haoxiang</creatorcontrib><creatorcontrib>Chang, Xiaojun</creatorcontrib><creatorcontrib>Yamaguchi, Shingo</creatorcontrib><creatorcontrib>Perez, Gregorio Martinez</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Agrawal, Dharma Prakash</au><au>Gupta, Brij Bhooshan</au><au>Wang, Haoxiang</au><au>Chang, Xiaojun</au><au>Yamaguchi, Shingo</au><au>Perez, Gregorio Martinez</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Guest Editorial Deep Learning Models for Industry Informatics</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>14</volume><issue>7</issue><spage>3166</spage><epage>3169</epage><pages>3166-3169</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>The papers in this special issue mainly focus on deep learning models for industry informatics, addressing both original algorithmic development and new applications of deep learning.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2018.2834547</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-7778-8807</orcidid><orcidid>https://orcid.org/0000-0003-4929-4698</orcidid><orcidid>https://orcid.org/0000-0001-5532-6604</orcidid><orcidid>https://orcid.org/0000-0003-0579-8501</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2018-07, Vol.14 (7), p.3166-3169
issn 1551-3203
1941-0050
language eng
recordid cdi_proquest_journals_2064312845
source IEEE Electronic Library (IEL)
subjects Computational modeling
Computer vision
Feature extraction
Industrial control
Informatics
Learning systems
Machine learning
Malware
Predictive models
Special issues and sections
title Guest Editorial Deep Learning Models for Industry Informatics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A43%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Guest%20Editorial%20Deep%20Learning%20Models%20for%20Industry%20Informatics&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Agrawal,%20Dharma%20Prakash&rft.date=2018-07-01&rft.volume=14&rft.issue=7&rft.spage=3166&rft.epage=3169&rft.pages=3166-3169&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2018.2834547&rft_dat=%3Cproquest_RIE%3E2064312845%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2064312845&rft_id=info:pmid/&rft_ieee_id=8402153&rfr_iscdi=true