Caching-Aided Collaborative D2D Operation for Predictive Data Dissemination in Industrial IoT
Industrial automation deployments constitute challenging environments where moving IoT machines may produce high-definition video and other heavy sensor data during surveying and inspection operations. Transporting massive contents to the edge network infrastructure and then eventually to the remote...
Gespeichert in:
Veröffentlicht in: | IEEE wireless communications 2018-06, Vol.25 (3), p.50-57 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 57 |
---|---|
container_issue | 3 |
container_start_page | 50 |
container_title | IEEE wireless communications |
container_volume | 25 |
creator | Orsino, Antonino Kovalchukov, Roman Samuylov, Andrey Moltchanov, Dmitri Andreev, Sergey Koucheryavy, Yevgeni Valkama, Mikko |
description | Industrial automation deployments constitute challenging environments where moving IoT machines may produce high-definition video and other heavy sensor data during surveying and inspection operations. Transporting massive contents to the edge network infrastructure and then eventually to the remote human operator requires reliable and high-rate radio links supported by intelligent data caching and delivery mechanisms. In this work, we address the challenges of contents dissemination in characteristic factory automation scenarios by proposing to engage moving industrial machines as D2D caching helpers. With the goal of improving the reliability of high-rate mmWave data connections, we introduce alternative contents dissemination modes and then construct a novel mobility-aware methodology that helps develop predictive mode selection strategies based on the anticipated radio link conditions. We also conduct a thorough system-level evaluation of representative data dissemination strategies to confirm the benefits of predictive solutions that employ D2D-enabled collaborative caching at the wireless edge to lower contents delivery latency and improve data acquisition reliability. |
doi_str_mv | 10.1109/MWC.2018.1700320 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2064266599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8403951</ieee_id><sourcerecordid>2064266599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-fa3ffa6a4840a7dcaeb4e09b94277b93ba7ec5c5a027094fe5df7b7ed8af47493</originalsourceid><addsrcrecordid>eNo9kEtLw0AQgBdRsFbvgpcFz6n73uyxpD4KSj1UPMkySXZ1S5vU3VTw35uQ4mlmmG8efAhdUzKjlJi7l_dixgjNZ1QTwhk5QRMqZZ4RlevTIecqoywX5-gipQ0hVCupJuijgOorNJ_ZPNSuxkW73ULZRujCj8MLtsCrvRuqtsG-jfg1ujpUYxM6wIuQktuFZiRCg5dNfUhdDLDFy3Z9ic48bJO7OsYpenu4XxdP2fPqcVnMn7OKc95lHrj3oEDkgoCuK3ClcMSURjCtS8NL0K6SlQTCNDHCO1l7XWpX5-CFFoZP0e24dx_b74NLnd20h9j0Jy0jSjClpBkoMlJVbFOKztt9DDuIv5YSO0i0vUQ7SLRHif3IzTgSnHP_eP8mN5LyP42hbfM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2064266599</pqid></control><display><type>article</type><title>Caching-Aided Collaborative D2D Operation for Predictive Data Dissemination in Industrial IoT</title><source>IEEE Electronic Library (IEL)</source><creator>Orsino, Antonino ; Kovalchukov, Roman ; Samuylov, Andrey ; Moltchanov, Dmitri ; Andreev, Sergey ; Koucheryavy, Yevgeni ; Valkama, Mikko</creator><creatorcontrib>Orsino, Antonino ; Kovalchukov, Roman ; Samuylov, Andrey ; Moltchanov, Dmitri ; Andreev, Sergey ; Koucheryavy, Yevgeni ; Valkama, Mikko</creatorcontrib><description>Industrial automation deployments constitute challenging environments where moving IoT machines may produce high-definition video and other heavy sensor data during surveying and inspection operations. Transporting massive contents to the edge network infrastructure and then eventually to the remote human operator requires reliable and high-rate radio links supported by intelligent data caching and delivery mechanisms. In this work, we address the challenges of contents dissemination in characteristic factory automation scenarios by proposing to engage moving industrial machines as D2D caching helpers. With the goal of improving the reliability of high-rate mmWave data connections, we introduce alternative contents dissemination modes and then construct a novel mobility-aware methodology that helps develop predictive mode selection strategies based on the anticipated radio link conditions. We also conduct a thorough system-level evaluation of representative data dissemination strategies to confirm the benefits of predictive solutions that employ D2D-enabled collaborative caching at the wireless edge to lower contents delivery latency and improve data acquisition reliability.</description><identifier>ISSN: 1536-1284</identifier><identifier>EISSN: 1558-0687</identifier><identifier>DOI: 10.1109/MWC.2018.1700320</identifier><identifier>CODEN: IWCEAS</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Automation ; Caching ; Collaboration ; Data dissemination ; Device-to-device communication ; Inspection ; Millimeter waves ; Modal choice ; Reliability ; Robot sensing systems ; Streaming media ; Surveying</subject><ispartof>IEEE wireless communications, 2018-06, Vol.25 (3), p.50-57</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-fa3ffa6a4840a7dcaeb4e09b94277b93ba7ec5c5a027094fe5df7b7ed8af47493</citedby><cites>FETCH-LOGICAL-c333t-fa3ffa6a4840a7dcaeb4e09b94277b93ba7ec5c5a027094fe5df7b7ed8af47493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8403951$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8403951$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Orsino, Antonino</creatorcontrib><creatorcontrib>Kovalchukov, Roman</creatorcontrib><creatorcontrib>Samuylov, Andrey</creatorcontrib><creatorcontrib>Moltchanov, Dmitri</creatorcontrib><creatorcontrib>Andreev, Sergey</creatorcontrib><creatorcontrib>Koucheryavy, Yevgeni</creatorcontrib><creatorcontrib>Valkama, Mikko</creatorcontrib><title>Caching-Aided Collaborative D2D Operation for Predictive Data Dissemination in Industrial IoT</title><title>IEEE wireless communications</title><addtitle>WC-M</addtitle><description>Industrial automation deployments constitute challenging environments where moving IoT machines may produce high-definition video and other heavy sensor data during surveying and inspection operations. Transporting massive contents to the edge network infrastructure and then eventually to the remote human operator requires reliable and high-rate radio links supported by intelligent data caching and delivery mechanisms. In this work, we address the challenges of contents dissemination in characteristic factory automation scenarios by proposing to engage moving industrial machines as D2D caching helpers. With the goal of improving the reliability of high-rate mmWave data connections, we introduce alternative contents dissemination modes and then construct a novel mobility-aware methodology that helps develop predictive mode selection strategies based on the anticipated radio link conditions. We also conduct a thorough system-level evaluation of representative data dissemination strategies to confirm the benefits of predictive solutions that employ D2D-enabled collaborative caching at the wireless edge to lower contents delivery latency and improve data acquisition reliability.</description><subject>Automation</subject><subject>Caching</subject><subject>Collaboration</subject><subject>Data dissemination</subject><subject>Device-to-device communication</subject><subject>Inspection</subject><subject>Millimeter waves</subject><subject>Modal choice</subject><subject>Reliability</subject><subject>Robot sensing systems</subject><subject>Streaming media</subject><subject>Surveying</subject><issn>1536-1284</issn><issn>1558-0687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLw0AQgBdRsFbvgpcFz6n73uyxpD4KSj1UPMkySXZ1S5vU3VTw35uQ4mlmmG8efAhdUzKjlJi7l_dixgjNZ1QTwhk5QRMqZZ4RlevTIecqoywX5-gipQ0hVCupJuijgOorNJ_ZPNSuxkW73ULZRujCj8MLtsCrvRuqtsG-jfg1ujpUYxM6wIuQktuFZiRCg5dNfUhdDLDFy3Z9ic48bJO7OsYpenu4XxdP2fPqcVnMn7OKc95lHrj3oEDkgoCuK3ClcMSURjCtS8NL0K6SlQTCNDHCO1l7XWpX5-CFFoZP0e24dx_b74NLnd20h9j0Jy0jSjClpBkoMlJVbFOKztt9DDuIv5YSO0i0vUQ7SLRHif3IzTgSnHP_eP8mN5LyP42hbfM</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Orsino, Antonino</creator><creator>Kovalchukov, Roman</creator><creator>Samuylov, Andrey</creator><creator>Moltchanov, Dmitri</creator><creator>Andreev, Sergey</creator><creator>Koucheryavy, Yevgeni</creator><creator>Valkama, Mikko</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>201806</creationdate><title>Caching-Aided Collaborative D2D Operation for Predictive Data Dissemination in Industrial IoT</title><author>Orsino, Antonino ; Kovalchukov, Roman ; Samuylov, Andrey ; Moltchanov, Dmitri ; Andreev, Sergey ; Koucheryavy, Yevgeni ; Valkama, Mikko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-fa3ffa6a4840a7dcaeb4e09b94277b93ba7ec5c5a027094fe5df7b7ed8af47493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Automation</topic><topic>Caching</topic><topic>Collaboration</topic><topic>Data dissemination</topic><topic>Device-to-device communication</topic><topic>Inspection</topic><topic>Millimeter waves</topic><topic>Modal choice</topic><topic>Reliability</topic><topic>Robot sensing systems</topic><topic>Streaming media</topic><topic>Surveying</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orsino, Antonino</creatorcontrib><creatorcontrib>Kovalchukov, Roman</creatorcontrib><creatorcontrib>Samuylov, Andrey</creatorcontrib><creatorcontrib>Moltchanov, Dmitri</creatorcontrib><creatorcontrib>Andreev, Sergey</creatorcontrib><creatorcontrib>Koucheryavy, Yevgeni</creatorcontrib><creatorcontrib>Valkama, Mikko</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Orsino, Antonino</au><au>Kovalchukov, Roman</au><au>Samuylov, Andrey</au><au>Moltchanov, Dmitri</au><au>Andreev, Sergey</au><au>Koucheryavy, Yevgeni</au><au>Valkama, Mikko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Caching-Aided Collaborative D2D Operation for Predictive Data Dissemination in Industrial IoT</atitle><jtitle>IEEE wireless communications</jtitle><stitle>WC-M</stitle><date>2018-06</date><risdate>2018</risdate><volume>25</volume><issue>3</issue><spage>50</spage><epage>57</epage><pages>50-57</pages><issn>1536-1284</issn><eissn>1558-0687</eissn><coden>IWCEAS</coden><abstract>Industrial automation deployments constitute challenging environments where moving IoT machines may produce high-definition video and other heavy sensor data during surveying and inspection operations. Transporting massive contents to the edge network infrastructure and then eventually to the remote human operator requires reliable and high-rate radio links supported by intelligent data caching and delivery mechanisms. In this work, we address the challenges of contents dissemination in characteristic factory automation scenarios by proposing to engage moving industrial machines as D2D caching helpers. With the goal of improving the reliability of high-rate mmWave data connections, we introduce alternative contents dissemination modes and then construct a novel mobility-aware methodology that helps develop predictive mode selection strategies based on the anticipated radio link conditions. We also conduct a thorough system-level evaluation of representative data dissemination strategies to confirm the benefits of predictive solutions that employ D2D-enabled collaborative caching at the wireless edge to lower contents delivery latency and improve data acquisition reliability.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MWC.2018.1700320</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1284 |
ispartof | IEEE wireless communications, 2018-06, Vol.25 (3), p.50-57 |
issn | 1536-1284 1558-0687 |
language | eng |
recordid | cdi_proquest_journals_2064266599 |
source | IEEE Electronic Library (IEL) |
subjects | Automation Caching Collaboration Data dissemination Device-to-device communication Inspection Millimeter waves Modal choice Reliability Robot sensing systems Streaming media Surveying |
title | Caching-Aided Collaborative D2D Operation for Predictive Data Dissemination in Industrial IoT |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A23%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Caching-Aided%20Collaborative%20D2D%20Operation%20for%20Predictive%20Data%20Dissemination%20in%20Industrial%20IoT&rft.jtitle=IEEE%20wireless%20communications&rft.au=Orsino,%20Antonino&rft.date=2018-06&rft.volume=25&rft.issue=3&rft.spage=50&rft.epage=57&rft.pages=50-57&rft.issn=1536-1284&rft.eissn=1558-0687&rft.coden=IWCEAS&rft_id=info:doi/10.1109/MWC.2018.1700320&rft_dat=%3Cproquest_RIE%3E2064266599%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2064266599&rft_id=info:pmid/&rft_ieee_id=8403951&rfr_iscdi=true |