Caching-Aided Collaborative D2D Operation for Predictive Data Dissemination in Industrial IoT

Industrial automation deployments constitute challenging environments where moving IoT machines may produce high-definition video and other heavy sensor data during surveying and inspection operations. Transporting massive contents to the edge network infrastructure and then eventually to the remote...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE wireless communications 2018-06, Vol.25 (3), p.50-57
Hauptverfasser: Orsino, Antonino, Kovalchukov, Roman, Samuylov, Andrey, Moltchanov, Dmitri, Andreev, Sergey, Koucheryavy, Yevgeni, Valkama, Mikko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 57
container_issue 3
container_start_page 50
container_title IEEE wireless communications
container_volume 25
creator Orsino, Antonino
Kovalchukov, Roman
Samuylov, Andrey
Moltchanov, Dmitri
Andreev, Sergey
Koucheryavy, Yevgeni
Valkama, Mikko
description Industrial automation deployments constitute challenging environments where moving IoT machines may produce high-definition video and other heavy sensor data during surveying and inspection operations. Transporting massive contents to the edge network infrastructure and then eventually to the remote human operator requires reliable and high-rate radio links supported by intelligent data caching and delivery mechanisms. In this work, we address the challenges of contents dissemination in characteristic factory automation scenarios by proposing to engage moving industrial machines as D2D caching helpers. With the goal of improving the reliability of high-rate mmWave data connections, we introduce alternative contents dissemination modes and then construct a novel mobility-aware methodology that helps develop predictive mode selection strategies based on the anticipated radio link conditions. We also conduct a thorough system-level evaluation of representative data dissemination strategies to confirm the benefits of predictive solutions that employ D2D-enabled collaborative caching at the wireless edge to lower contents delivery latency and improve data acquisition reliability.
doi_str_mv 10.1109/MWC.2018.1700320
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2064266599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8403951</ieee_id><sourcerecordid>2064266599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-fa3ffa6a4840a7dcaeb4e09b94277b93ba7ec5c5a027094fe5df7b7ed8af47493</originalsourceid><addsrcrecordid>eNo9kEtLw0AQgBdRsFbvgpcFz6n73uyxpD4KSj1UPMkySXZ1S5vU3VTw35uQ4mlmmG8efAhdUzKjlJi7l_dixgjNZ1QTwhk5QRMqZZ4RlevTIecqoywX5-gipQ0hVCupJuijgOorNJ_ZPNSuxkW73ULZRujCj8MLtsCrvRuqtsG-jfg1ujpUYxM6wIuQktuFZiRCg5dNfUhdDLDFy3Z9ic48bJO7OsYpenu4XxdP2fPqcVnMn7OKc95lHrj3oEDkgoCuK3ClcMSURjCtS8NL0K6SlQTCNDHCO1l7XWpX5-CFFoZP0e24dx_b74NLnd20h9j0Jy0jSjClpBkoMlJVbFOKztt9DDuIv5YSO0i0vUQ7SLRHif3IzTgSnHP_eP8mN5LyP42hbfM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2064266599</pqid></control><display><type>article</type><title>Caching-Aided Collaborative D2D Operation for Predictive Data Dissemination in Industrial IoT</title><source>IEEE Electronic Library (IEL)</source><creator>Orsino, Antonino ; Kovalchukov, Roman ; Samuylov, Andrey ; Moltchanov, Dmitri ; Andreev, Sergey ; Koucheryavy, Yevgeni ; Valkama, Mikko</creator><creatorcontrib>Orsino, Antonino ; Kovalchukov, Roman ; Samuylov, Andrey ; Moltchanov, Dmitri ; Andreev, Sergey ; Koucheryavy, Yevgeni ; Valkama, Mikko</creatorcontrib><description>Industrial automation deployments constitute challenging environments where moving IoT machines may produce high-definition video and other heavy sensor data during surveying and inspection operations. Transporting massive contents to the edge network infrastructure and then eventually to the remote human operator requires reliable and high-rate radio links supported by intelligent data caching and delivery mechanisms. In this work, we address the challenges of contents dissemination in characteristic factory automation scenarios by proposing to engage moving industrial machines as D2D caching helpers. With the goal of improving the reliability of high-rate mmWave data connections, we introduce alternative contents dissemination modes and then construct a novel mobility-aware methodology that helps develop predictive mode selection strategies based on the anticipated radio link conditions. We also conduct a thorough system-level evaluation of representative data dissemination strategies to confirm the benefits of predictive solutions that employ D2D-enabled collaborative caching at the wireless edge to lower contents delivery latency and improve data acquisition reliability.</description><identifier>ISSN: 1536-1284</identifier><identifier>EISSN: 1558-0687</identifier><identifier>DOI: 10.1109/MWC.2018.1700320</identifier><identifier>CODEN: IWCEAS</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Automation ; Caching ; Collaboration ; Data dissemination ; Device-to-device communication ; Inspection ; Millimeter waves ; Modal choice ; Reliability ; Robot sensing systems ; Streaming media ; Surveying</subject><ispartof>IEEE wireless communications, 2018-06, Vol.25 (3), p.50-57</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-fa3ffa6a4840a7dcaeb4e09b94277b93ba7ec5c5a027094fe5df7b7ed8af47493</citedby><cites>FETCH-LOGICAL-c333t-fa3ffa6a4840a7dcaeb4e09b94277b93ba7ec5c5a027094fe5df7b7ed8af47493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8403951$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8403951$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Orsino, Antonino</creatorcontrib><creatorcontrib>Kovalchukov, Roman</creatorcontrib><creatorcontrib>Samuylov, Andrey</creatorcontrib><creatorcontrib>Moltchanov, Dmitri</creatorcontrib><creatorcontrib>Andreev, Sergey</creatorcontrib><creatorcontrib>Koucheryavy, Yevgeni</creatorcontrib><creatorcontrib>Valkama, Mikko</creatorcontrib><title>Caching-Aided Collaborative D2D Operation for Predictive Data Dissemination in Industrial IoT</title><title>IEEE wireless communications</title><addtitle>WC-M</addtitle><description>Industrial automation deployments constitute challenging environments where moving IoT machines may produce high-definition video and other heavy sensor data during surveying and inspection operations. Transporting massive contents to the edge network infrastructure and then eventually to the remote human operator requires reliable and high-rate radio links supported by intelligent data caching and delivery mechanisms. In this work, we address the challenges of contents dissemination in characteristic factory automation scenarios by proposing to engage moving industrial machines as D2D caching helpers. With the goal of improving the reliability of high-rate mmWave data connections, we introduce alternative contents dissemination modes and then construct a novel mobility-aware methodology that helps develop predictive mode selection strategies based on the anticipated radio link conditions. We also conduct a thorough system-level evaluation of representative data dissemination strategies to confirm the benefits of predictive solutions that employ D2D-enabled collaborative caching at the wireless edge to lower contents delivery latency and improve data acquisition reliability.</description><subject>Automation</subject><subject>Caching</subject><subject>Collaboration</subject><subject>Data dissemination</subject><subject>Device-to-device communication</subject><subject>Inspection</subject><subject>Millimeter waves</subject><subject>Modal choice</subject><subject>Reliability</subject><subject>Robot sensing systems</subject><subject>Streaming media</subject><subject>Surveying</subject><issn>1536-1284</issn><issn>1558-0687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLw0AQgBdRsFbvgpcFz6n73uyxpD4KSj1UPMkySXZ1S5vU3VTw35uQ4mlmmG8efAhdUzKjlJi7l_dixgjNZ1QTwhk5QRMqZZ4RlevTIecqoywX5-gipQ0hVCupJuijgOorNJ_ZPNSuxkW73ULZRujCj8MLtsCrvRuqtsG-jfg1ujpUYxM6wIuQktuFZiRCg5dNfUhdDLDFy3Z9ic48bJO7OsYpenu4XxdP2fPqcVnMn7OKc95lHrj3oEDkgoCuK3ClcMSURjCtS8NL0K6SlQTCNDHCO1l7XWpX5-CFFoZP0e24dx_b74NLnd20h9j0Jy0jSjClpBkoMlJVbFOKztt9DDuIv5YSO0i0vUQ7SLRHif3IzTgSnHP_eP8mN5LyP42hbfM</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Orsino, Antonino</creator><creator>Kovalchukov, Roman</creator><creator>Samuylov, Andrey</creator><creator>Moltchanov, Dmitri</creator><creator>Andreev, Sergey</creator><creator>Koucheryavy, Yevgeni</creator><creator>Valkama, Mikko</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>201806</creationdate><title>Caching-Aided Collaborative D2D Operation for Predictive Data Dissemination in Industrial IoT</title><author>Orsino, Antonino ; Kovalchukov, Roman ; Samuylov, Andrey ; Moltchanov, Dmitri ; Andreev, Sergey ; Koucheryavy, Yevgeni ; Valkama, Mikko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-fa3ffa6a4840a7dcaeb4e09b94277b93ba7ec5c5a027094fe5df7b7ed8af47493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Automation</topic><topic>Caching</topic><topic>Collaboration</topic><topic>Data dissemination</topic><topic>Device-to-device communication</topic><topic>Inspection</topic><topic>Millimeter waves</topic><topic>Modal choice</topic><topic>Reliability</topic><topic>Robot sensing systems</topic><topic>Streaming media</topic><topic>Surveying</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orsino, Antonino</creatorcontrib><creatorcontrib>Kovalchukov, Roman</creatorcontrib><creatorcontrib>Samuylov, Andrey</creatorcontrib><creatorcontrib>Moltchanov, Dmitri</creatorcontrib><creatorcontrib>Andreev, Sergey</creatorcontrib><creatorcontrib>Koucheryavy, Yevgeni</creatorcontrib><creatorcontrib>Valkama, Mikko</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Orsino, Antonino</au><au>Kovalchukov, Roman</au><au>Samuylov, Andrey</au><au>Moltchanov, Dmitri</au><au>Andreev, Sergey</au><au>Koucheryavy, Yevgeni</au><au>Valkama, Mikko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Caching-Aided Collaborative D2D Operation for Predictive Data Dissemination in Industrial IoT</atitle><jtitle>IEEE wireless communications</jtitle><stitle>WC-M</stitle><date>2018-06</date><risdate>2018</risdate><volume>25</volume><issue>3</issue><spage>50</spage><epage>57</epage><pages>50-57</pages><issn>1536-1284</issn><eissn>1558-0687</eissn><coden>IWCEAS</coden><abstract>Industrial automation deployments constitute challenging environments where moving IoT machines may produce high-definition video and other heavy sensor data during surveying and inspection operations. Transporting massive contents to the edge network infrastructure and then eventually to the remote human operator requires reliable and high-rate radio links supported by intelligent data caching and delivery mechanisms. In this work, we address the challenges of contents dissemination in characteristic factory automation scenarios by proposing to engage moving industrial machines as D2D caching helpers. With the goal of improving the reliability of high-rate mmWave data connections, we introduce alternative contents dissemination modes and then construct a novel mobility-aware methodology that helps develop predictive mode selection strategies based on the anticipated radio link conditions. We also conduct a thorough system-level evaluation of representative data dissemination strategies to confirm the benefits of predictive solutions that employ D2D-enabled collaborative caching at the wireless edge to lower contents delivery latency and improve data acquisition reliability.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MWC.2018.1700320</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1284
ispartof IEEE wireless communications, 2018-06, Vol.25 (3), p.50-57
issn 1536-1284
1558-0687
language eng
recordid cdi_proquest_journals_2064266599
source IEEE Electronic Library (IEL)
subjects Automation
Caching
Collaboration
Data dissemination
Device-to-device communication
Inspection
Millimeter waves
Modal choice
Reliability
Robot sensing systems
Streaming media
Surveying
title Caching-Aided Collaborative D2D Operation for Predictive Data Dissemination in Industrial IoT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A23%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Caching-Aided%20Collaborative%20D2D%20Operation%20for%20Predictive%20Data%20Dissemination%20in%20Industrial%20IoT&rft.jtitle=IEEE%20wireless%20communications&rft.au=Orsino,%20Antonino&rft.date=2018-06&rft.volume=25&rft.issue=3&rft.spage=50&rft.epage=57&rft.pages=50-57&rft.issn=1536-1284&rft.eissn=1558-0687&rft.coden=IWCEAS&rft_id=info:doi/10.1109/MWC.2018.1700320&rft_dat=%3Cproquest_RIE%3E2064266599%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2064266599&rft_id=info:pmid/&rft_ieee_id=8403951&rfr_iscdi=true