Influence of alkali metal (Li and Cs) addition to Mo2N catalyst for CO hydrogenation to hydrocarbons and oxygenates

The aim of this work is to understand the catalytic behaviour of Li and Cs promoted Mo2N for CO hydrogenation to hydrocarbons and oxygenates at the reaction conditions 275–325 °C, 7 MPa, and 30 000 h−1 GHSV. Molybdenum nitrides were synthesized via temperature programmed treatment of ammonium heptam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of chemical engineering 2018-08, Vol.96 (8), p.1770-1779
Hauptverfasser: Zaman, Sharif F., Pasupulety, Nagaraju, Al‐Zahrani, Abdulrahim A., Daous, Muhammad A., Driss, Hafedh, Al‐Shahrani, Saad S., Petrov, Lachezar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1779
container_issue 8
container_start_page 1770
container_title Canadian journal of chemical engineering
container_volume 96
creator Zaman, Sharif F.
Pasupulety, Nagaraju
Al‐Zahrani, Abdulrahim A.
Daous, Muhammad A.
Driss, Hafedh
Al‐Shahrani, Saad S.
Petrov, Lachezar
description The aim of this work is to understand the catalytic behaviour of Li and Cs promoted Mo2N for CO hydrogenation to hydrocarbons and oxygenates at the reaction conditions 275–325 °C, 7 MPa, and 30 000 h−1 GHSV. Molybdenum nitrides were synthesized via temperature programmed treatment of ammonium heptamolybdate (AHM) and alkali metal (AM) precursors under continuous gaseous ammonia flow. Unpromoted Mo2N and AM‐Mo2N catalysts were characterized using BET‐pore size, X‐ray diffraction, TPD‐mass of CO, HR‐TEM, and XPS techniques. Nominal loadings of 1, 5, and 10 wt% of Li and Cs were selected for these studies. At a 10 % CO conversion level, the total oxygenate selectivity of 28, 11, and 6.5 % was observed on 5Cs‐Mo2N, 5Li‐Mo2N, and unpromoted Mo2N, respectively. The decreased oxygenate selectivity for unpromoted Mo2N was mainly associated with CO dissociative hydrogenation on Moδ+ sites. On the other hand, improved molecular CO insertion into −CxHy intermediate accelerates the total oxygenate formation on the Cs‐Mo‐N catalyst. However, during nitridation, crystal structure changes were observed in Li‐Mo‐N and the obtained oxygenates selectivity was attributed to the Li2MoO4 phases. At lower AM loadings, the active sites corresponding to oxygenates formation were inadequate, and at higher AM loadings, surface metallic molybdenum decreased the total oxygenate selectivity. CO hydrogenation activity at 7 MPa and 30 000 h−1 GHSV.
doi_str_mv 10.1002/cjce.23144
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2064258504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2064258504</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3284-b40185cbd732bf6ebcbfc668798c95b3049f73ed6a532cd8c8aa6b482a330b6e3</originalsourceid><addsrcrecordid>eNo1kLtOwzAUhi0EEqWw8ASWWGBIOb7EdUYUFSgqdAGJzbIdp6SkdolTQd6eNIXp3D79R_oQuiQwIQD01q6tm1BGOD9CI5KxLAGSvR-jEQDIhAPjp-gsxnU_UuBkhOLcl_XOeetwKLGuP3Vd4Y1rdY2vFxXWvsB5vMG6KKq2Ch63AT8H-oKt7pEutrgMDc6X-KMrmrByXv9Tw8LqxgQfh5jw0w13F8_RSanr6C7-6hi93c9e88dksXyY53eLZMWo5InhQGRqTTFl1JTCGWtKK4ScZtJmqWHAs3LKXCF0yqgtpJVaC8Ml1YyBEY6N0dUhd9uEr52LrVqHXeP7l4qC4DSVKfCeIgfqu6pdp7ZNtdFNpwiovVG1N6oGoyp_ymdDx34BEIRr0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2064258504</pqid></control><display><type>article</type><title>Influence of alkali metal (Li and Cs) addition to Mo2N catalyst for CO hydrogenation to hydrocarbons and oxygenates</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zaman, Sharif F. ; Pasupulety, Nagaraju ; Al‐Zahrani, Abdulrahim A. ; Daous, Muhammad A. ; Driss, Hafedh ; Al‐Shahrani, Saad S. ; Petrov, Lachezar</creator><creatorcontrib>Zaman, Sharif F. ; Pasupulety, Nagaraju ; Al‐Zahrani, Abdulrahim A. ; Daous, Muhammad A. ; Driss, Hafedh ; Al‐Shahrani, Saad S. ; Petrov, Lachezar</creatorcontrib><description>The aim of this work is to understand the catalytic behaviour of Li and Cs promoted Mo2N for CO hydrogenation to hydrocarbons and oxygenates at the reaction conditions 275–325 °C, 7 MPa, and 30 000 h−1 GHSV. Molybdenum nitrides were synthesized via temperature programmed treatment of ammonium heptamolybdate (AHM) and alkali metal (AM) precursors under continuous gaseous ammonia flow. Unpromoted Mo2N and AM‐Mo2N catalysts were characterized using BET‐pore size, X‐ray diffraction, TPD‐mass of CO, HR‐TEM, and XPS techniques. Nominal loadings of 1, 5, and 10 wt% of Li and Cs were selected for these studies. At a 10 % CO conversion level, the total oxygenate selectivity of 28, 11, and 6.5 % was observed on 5Cs‐Mo2N, 5Li‐Mo2N, and unpromoted Mo2N, respectively. The decreased oxygenate selectivity for unpromoted Mo2N was mainly associated with CO dissociative hydrogenation on Moδ+ sites. On the other hand, improved molecular CO insertion into −CxHy intermediate accelerates the total oxygenate formation on the Cs‐Mo‐N catalyst. However, during nitridation, crystal structure changes were observed in Li‐Mo‐N and the obtained oxygenates selectivity was attributed to the Li2MoO4 phases. At lower AM loadings, the active sites corresponding to oxygenates formation were inadequate, and at higher AM loadings, surface metallic molybdenum decreased the total oxygenate selectivity. CO hydrogenation activity at 7 MPa and 30 000 h−1 GHSV.</description><identifier>ISSN: 0008-4034</identifier><identifier>EISSN: 1939-019X</identifier><identifier>DOI: 10.1002/cjce.23144</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>alkali metal ; Alkali metals ; Ammonia ; Ammonium molybdate ; Carbon monoxide ; Catalysis ; Catalysts ; Cesium ; CO hydrogenation ; Crystal structure ; Hydrocarbons ; Hydrogenation ; Lithium ; Molecular chains ; Molybdenum ; molybdenum nitride ; nitridation ; oxygenates ; Pore size ; Porosity ; Selectivity ; X-ray diffraction</subject><ispartof>Canadian journal of chemical engineering, 2018-08, Vol.96 (8), p.1770-1779</ispartof><rights>2018 Canadian Society for Chemical Engineering</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcjce.23144$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcjce.23144$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zaman, Sharif F.</creatorcontrib><creatorcontrib>Pasupulety, Nagaraju</creatorcontrib><creatorcontrib>Al‐Zahrani, Abdulrahim A.</creatorcontrib><creatorcontrib>Daous, Muhammad A.</creatorcontrib><creatorcontrib>Driss, Hafedh</creatorcontrib><creatorcontrib>Al‐Shahrani, Saad S.</creatorcontrib><creatorcontrib>Petrov, Lachezar</creatorcontrib><title>Influence of alkali metal (Li and Cs) addition to Mo2N catalyst for CO hydrogenation to hydrocarbons and oxygenates</title><title>Canadian journal of chemical engineering</title><description>The aim of this work is to understand the catalytic behaviour of Li and Cs promoted Mo2N for CO hydrogenation to hydrocarbons and oxygenates at the reaction conditions 275–325 °C, 7 MPa, and 30 000 h−1 GHSV. Molybdenum nitrides were synthesized via temperature programmed treatment of ammonium heptamolybdate (AHM) and alkali metal (AM) precursors under continuous gaseous ammonia flow. Unpromoted Mo2N and AM‐Mo2N catalysts were characterized using BET‐pore size, X‐ray diffraction, TPD‐mass of CO, HR‐TEM, and XPS techniques. Nominal loadings of 1, 5, and 10 wt% of Li and Cs were selected for these studies. At a 10 % CO conversion level, the total oxygenate selectivity of 28, 11, and 6.5 % was observed on 5Cs‐Mo2N, 5Li‐Mo2N, and unpromoted Mo2N, respectively. The decreased oxygenate selectivity for unpromoted Mo2N was mainly associated with CO dissociative hydrogenation on Moδ+ sites. On the other hand, improved molecular CO insertion into −CxHy intermediate accelerates the total oxygenate formation on the Cs‐Mo‐N catalyst. However, during nitridation, crystal structure changes were observed in Li‐Mo‐N and the obtained oxygenates selectivity was attributed to the Li2MoO4 phases. At lower AM loadings, the active sites corresponding to oxygenates formation were inadequate, and at higher AM loadings, surface metallic molybdenum decreased the total oxygenate selectivity. CO hydrogenation activity at 7 MPa and 30 000 h−1 GHSV.</description><subject>alkali metal</subject><subject>Alkali metals</subject><subject>Ammonia</subject><subject>Ammonium molybdate</subject><subject>Carbon monoxide</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Cesium</subject><subject>CO hydrogenation</subject><subject>Crystal structure</subject><subject>Hydrocarbons</subject><subject>Hydrogenation</subject><subject>Lithium</subject><subject>Molecular chains</subject><subject>Molybdenum</subject><subject>molybdenum nitride</subject><subject>nitridation</subject><subject>oxygenates</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Selectivity</subject><subject>X-ray diffraction</subject><issn>0008-4034</issn><issn>1939-019X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo1kLtOwzAUhi0EEqWw8ASWWGBIOb7EdUYUFSgqdAGJzbIdp6SkdolTQd6eNIXp3D79R_oQuiQwIQD01q6tm1BGOD9CI5KxLAGSvR-jEQDIhAPjp-gsxnU_UuBkhOLcl_XOeetwKLGuP3Vd4Y1rdY2vFxXWvsB5vMG6KKq2Ch63AT8H-oKt7pEutrgMDc6X-KMrmrByXv9Tw8LqxgQfh5jw0w13F8_RSanr6C7-6hi93c9e88dksXyY53eLZMWo5InhQGRqTTFl1JTCGWtKK4ScZtJmqWHAs3LKXCF0yqgtpJVaC8Ml1YyBEY6N0dUhd9uEr52LrVqHXeP7l4qC4DSVKfCeIgfqu6pdp7ZNtdFNpwiovVG1N6oGoyp_ymdDx34BEIRr0g</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Zaman, Sharif F.</creator><creator>Pasupulety, Nagaraju</creator><creator>Al‐Zahrani, Abdulrahim A.</creator><creator>Daous, Muhammad A.</creator><creator>Driss, Hafedh</creator><creator>Al‐Shahrani, Saad S.</creator><creator>Petrov, Lachezar</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201808</creationdate><title>Influence of alkali metal (Li and Cs) addition to Mo2N catalyst for CO hydrogenation to hydrocarbons and oxygenates</title><author>Zaman, Sharif F. ; Pasupulety, Nagaraju ; Al‐Zahrani, Abdulrahim A. ; Daous, Muhammad A. ; Driss, Hafedh ; Al‐Shahrani, Saad S. ; Petrov, Lachezar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3284-b40185cbd732bf6ebcbfc668798c95b3049f73ed6a532cd8c8aa6b482a330b6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>alkali metal</topic><topic>Alkali metals</topic><topic>Ammonia</topic><topic>Ammonium molybdate</topic><topic>Carbon monoxide</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Cesium</topic><topic>CO hydrogenation</topic><topic>Crystal structure</topic><topic>Hydrocarbons</topic><topic>Hydrogenation</topic><topic>Lithium</topic><topic>Molecular chains</topic><topic>Molybdenum</topic><topic>molybdenum nitride</topic><topic>nitridation</topic><topic>oxygenates</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Selectivity</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaman, Sharif F.</creatorcontrib><creatorcontrib>Pasupulety, Nagaraju</creatorcontrib><creatorcontrib>Al‐Zahrani, Abdulrahim A.</creatorcontrib><creatorcontrib>Daous, Muhammad A.</creatorcontrib><creatorcontrib>Driss, Hafedh</creatorcontrib><creatorcontrib>Al‐Shahrani, Saad S.</creatorcontrib><creatorcontrib>Petrov, Lachezar</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Canadian journal of chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaman, Sharif F.</au><au>Pasupulety, Nagaraju</au><au>Al‐Zahrani, Abdulrahim A.</au><au>Daous, Muhammad A.</au><au>Driss, Hafedh</au><au>Al‐Shahrani, Saad S.</au><au>Petrov, Lachezar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of alkali metal (Li and Cs) addition to Mo2N catalyst for CO hydrogenation to hydrocarbons and oxygenates</atitle><jtitle>Canadian journal of chemical engineering</jtitle><date>2018-08</date><risdate>2018</risdate><volume>96</volume><issue>8</issue><spage>1770</spage><epage>1779</epage><pages>1770-1779</pages><issn>0008-4034</issn><eissn>1939-019X</eissn><abstract>The aim of this work is to understand the catalytic behaviour of Li and Cs promoted Mo2N for CO hydrogenation to hydrocarbons and oxygenates at the reaction conditions 275–325 °C, 7 MPa, and 30 000 h−1 GHSV. Molybdenum nitrides were synthesized via temperature programmed treatment of ammonium heptamolybdate (AHM) and alkali metal (AM) precursors under continuous gaseous ammonia flow. Unpromoted Mo2N and AM‐Mo2N catalysts were characterized using BET‐pore size, X‐ray diffraction, TPD‐mass of CO, HR‐TEM, and XPS techniques. Nominal loadings of 1, 5, and 10 wt% of Li and Cs were selected for these studies. At a 10 % CO conversion level, the total oxygenate selectivity of 28, 11, and 6.5 % was observed on 5Cs‐Mo2N, 5Li‐Mo2N, and unpromoted Mo2N, respectively. The decreased oxygenate selectivity for unpromoted Mo2N was mainly associated with CO dissociative hydrogenation on Moδ+ sites. On the other hand, improved molecular CO insertion into −CxHy intermediate accelerates the total oxygenate formation on the Cs‐Mo‐N catalyst. However, during nitridation, crystal structure changes were observed in Li‐Mo‐N and the obtained oxygenates selectivity was attributed to the Li2MoO4 phases. At lower AM loadings, the active sites corresponding to oxygenates formation were inadequate, and at higher AM loadings, surface metallic molybdenum decreased the total oxygenate selectivity. CO hydrogenation activity at 7 MPa and 30 000 h−1 GHSV.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cjce.23144</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0008-4034
ispartof Canadian journal of chemical engineering, 2018-08, Vol.96 (8), p.1770-1779
issn 0008-4034
1939-019X
language eng
recordid cdi_proquest_journals_2064258504
source Wiley Online Library Journals Frontfile Complete
subjects alkali metal
Alkali metals
Ammonia
Ammonium molybdate
Carbon monoxide
Catalysis
Catalysts
Cesium
CO hydrogenation
Crystal structure
Hydrocarbons
Hydrogenation
Lithium
Molecular chains
Molybdenum
molybdenum nitride
nitridation
oxygenates
Pore size
Porosity
Selectivity
X-ray diffraction
title Influence of alkali metal (Li and Cs) addition to Mo2N catalyst for CO hydrogenation to hydrocarbons and oxygenates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A12%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20alkali%20metal%20(Li%20and%20Cs)%20addition%20to%20Mo2N%20catalyst%20for%20CO%20hydrogenation%20to%20hydrocarbons%20and%20oxygenates&rft.jtitle=Canadian%20journal%20of%20chemical%20engineering&rft.au=Zaman,%20Sharif%20F.&rft.date=2018-08&rft.volume=96&rft.issue=8&rft.spage=1770&rft.epage=1779&rft.pages=1770-1779&rft.issn=0008-4034&rft.eissn=1939-019X&rft_id=info:doi/10.1002/cjce.23144&rft_dat=%3Cproquest_wiley%3E2064258504%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2064258504&rft_id=info:pmid/&rfr_iscdi=true