Topological Insight into Superabsorbent Hydrogel Network Structures: a 1H Double‐Quantum NMR Study
Superabsorbent polymer (SAP) hydrogels have pronounced water‐absorbing and water‐storing capacities, which are essential for numerous potential applications. It remains a challenge to better understand the network topology because of their amorphous and anisotropic structures. Synthesis parameters s...
Gespeichert in:
Veröffentlicht in: | Macromolecular chemistry and physics 2018-07, Vol.219 (13), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 13 |
container_start_page | |
container_title | Macromolecular chemistry and physics |
container_volume | 219 |
creator | Guo, Xiaoai Theissen, Solveig Claussen, Jan Hildebrand, Viet Kamphus, Juliane Wilhelm, Manfred Luy, Burkhard Guthausen, Gisela |
description | Superabsorbent polymer (SAP) hydrogels have pronounced water‐absorbing and water‐storing capacities, which are essential for numerous potential applications. It remains a challenge to better understand the network topology because of their amorphous and anisotropic structures. Synthesis parameters such as monomer concentration, degree of neutralization and crosslinking, and surface crosslinking are varied to correlate structural changes in the network with low‐field proton double‐quantum (1H DQ) NMR results. 1H DQ‐NMR data are processed by a reliable, user‐independent analysis approach to determine the fractions of network defects, of mobile sol components, and of network chains as well as the residual dipolar coupling distribution in SAPs. In addition, results obtained by applying different distributions to describe the DQ buildup curves are quantified and compared. The correlation between topological and synthesis parameters as well as the impact of temperature, swelling, and solvent of SAP on DQ signals is investigated and discussed.
Superabsorbent hydrogel network structures are investigated by low‐field proton double‐quantum (1H DQ) NMR. A user‐independent approach is proposed for reliable data processing, opening up the possibility for automation of data analysis regarding quality control application of low‐field 1H DQ‐NMR. The results lead to a better understanding of the network topology, local mobility, and heterogeneity of hydrogels and their correlation with synthesis parameters. |
doi_str_mv | 10.1002/macp.201800100 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2064215370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2064215370</sourcerecordid><originalsourceid>FETCH-LOGICAL-g1550-16d6a00b4e9bf3f3671cddd4a62922b32211193ef0d08010aad0195cbea175e63</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRSMEEqWwZW2JdcqMXScNu6o8Wqktj5a15cROSEnj4MSqsuMT-Ea-hFRFXc1c6ejO6HjeNcIAAejtVibVgAKOALp84vWQU_RZxPhptwOlPjJOz72Lut4AwAiisOeptalMYbI8kQWZlXWefTQkLxtDVq7SVsa1sbEuGzJtlTWZLshSNztjP8mqsS5pnNX1HZEEp-TeuLjQv98_r06WjduS5eKto5xqL72zVBa1vvqffe_98WE9mfrz56fZZDz3M-QcfAxUIAHioY7ilKUsCDFRSg1lQCNKY0YpIkZMp6C67xGkVIART2ItMeQ6YH3v5tBbWfPldN2IjXG27E4KCsGQImchdFR0oHZ5oVtR2XwrbSsQxF6j2GsUR41iMZ68HBP7A92Waa8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2064215370</pqid></control><display><type>article</type><title>Topological Insight into Superabsorbent Hydrogel Network Structures: a 1H Double‐Quantum NMR Study</title><source>Access via Wiley Online Library</source><creator>Guo, Xiaoai ; Theissen, Solveig ; Claussen, Jan ; Hildebrand, Viet ; Kamphus, Juliane ; Wilhelm, Manfred ; Luy, Burkhard ; Guthausen, Gisela</creator><creatorcontrib>Guo, Xiaoai ; Theissen, Solveig ; Claussen, Jan ; Hildebrand, Viet ; Kamphus, Juliane ; Wilhelm, Manfred ; Luy, Burkhard ; Guthausen, Gisela</creatorcontrib><description>Superabsorbent polymer (SAP) hydrogels have pronounced water‐absorbing and water‐storing capacities, which are essential for numerous potential applications. It remains a challenge to better understand the network topology because of their amorphous and anisotropic structures. Synthesis parameters such as monomer concentration, degree of neutralization and crosslinking, and surface crosslinking are varied to correlate structural changes in the network with low‐field proton double‐quantum (1H DQ) NMR results. 1H DQ‐NMR data are processed by a reliable, user‐independent analysis approach to determine the fractions of network defects, of mobile sol components, and of network chains as well as the residual dipolar coupling distribution in SAPs. In addition, results obtained by applying different distributions to describe the DQ buildup curves are quantified and compared. The correlation between topological and synthesis parameters as well as the impact of temperature, swelling, and solvent of SAP on DQ signals is investigated and discussed.
Superabsorbent hydrogel network structures are investigated by low‐field proton double‐quantum (1H DQ) NMR. A user‐independent approach is proposed for reliable data processing, opening up the possibility for automation of data analysis regarding quality control application of low‐field 1H DQ‐NMR. The results lead to a better understanding of the network topology, local mobility, and heterogeneity of hydrogels and their correlation with synthesis parameters.</description><identifier>ISSN: 1022-1352</identifier><identifier>EISSN: 1521-3935</identifier><identifier>DOI: 10.1002/macp.201800100</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>1H double‐quantum NMR ; Chain mobility ; Crosslinking ; Hydrogels ; network defects ; Network topologies ; NMR ; Nuclear magnetic resonance ; Parameters ; residual dipolar coupling ; Superabsorbent polymers ; Synthesis ; Wireless networks</subject><ispartof>Macromolecular chemistry and physics, 2018-07, Vol.219 (13), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmacp.201800100$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmacp.201800100$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Guo, Xiaoai</creatorcontrib><creatorcontrib>Theissen, Solveig</creatorcontrib><creatorcontrib>Claussen, Jan</creatorcontrib><creatorcontrib>Hildebrand, Viet</creatorcontrib><creatorcontrib>Kamphus, Juliane</creatorcontrib><creatorcontrib>Wilhelm, Manfred</creatorcontrib><creatorcontrib>Luy, Burkhard</creatorcontrib><creatorcontrib>Guthausen, Gisela</creatorcontrib><title>Topological Insight into Superabsorbent Hydrogel Network Structures: a 1H Double‐Quantum NMR Study</title><title>Macromolecular chemistry and physics</title><description>Superabsorbent polymer (SAP) hydrogels have pronounced water‐absorbing and water‐storing capacities, which are essential for numerous potential applications. It remains a challenge to better understand the network topology because of their amorphous and anisotropic structures. Synthesis parameters such as monomer concentration, degree of neutralization and crosslinking, and surface crosslinking are varied to correlate structural changes in the network with low‐field proton double‐quantum (1H DQ) NMR results. 1H DQ‐NMR data are processed by a reliable, user‐independent analysis approach to determine the fractions of network defects, of mobile sol components, and of network chains as well as the residual dipolar coupling distribution in SAPs. In addition, results obtained by applying different distributions to describe the DQ buildup curves are quantified and compared. The correlation between topological and synthesis parameters as well as the impact of temperature, swelling, and solvent of SAP on DQ signals is investigated and discussed.
Superabsorbent hydrogel network structures are investigated by low‐field proton double‐quantum (1H DQ) NMR. A user‐independent approach is proposed for reliable data processing, opening up the possibility for automation of data analysis regarding quality control application of low‐field 1H DQ‐NMR. The results lead to a better understanding of the network topology, local mobility, and heterogeneity of hydrogels and their correlation with synthesis parameters.</description><subject>1H double‐quantum NMR</subject><subject>Chain mobility</subject><subject>Crosslinking</subject><subject>Hydrogels</subject><subject>network defects</subject><subject>Network topologies</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Parameters</subject><subject>residual dipolar coupling</subject><subject>Superabsorbent polymers</subject><subject>Synthesis</subject><subject>Wireless networks</subject><issn>1022-1352</issn><issn>1521-3935</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRSMEEqWwZW2JdcqMXScNu6o8Wqktj5a15cROSEnj4MSqsuMT-Ea-hFRFXc1c6ejO6HjeNcIAAejtVibVgAKOALp84vWQU_RZxPhptwOlPjJOz72Lut4AwAiisOeptalMYbI8kQWZlXWefTQkLxtDVq7SVsa1sbEuGzJtlTWZLshSNztjP8mqsS5pnNX1HZEEp-TeuLjQv98_r06WjduS5eKto5xqL72zVBa1vvqffe_98WE9mfrz56fZZDz3M-QcfAxUIAHioY7ilKUsCDFRSg1lQCNKY0YpIkZMp6C67xGkVIART2ItMeQ6YH3v5tBbWfPldN2IjXG27E4KCsGQImchdFR0oHZ5oVtR2XwrbSsQxF6j2GsUR41iMZ68HBP7A92Waa8</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Guo, Xiaoai</creator><creator>Theissen, Solveig</creator><creator>Claussen, Jan</creator><creator>Hildebrand, Viet</creator><creator>Kamphus, Juliane</creator><creator>Wilhelm, Manfred</creator><creator>Luy, Burkhard</creator><creator>Guthausen, Gisela</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201807</creationdate><title>Topological Insight into Superabsorbent Hydrogel Network Structures: a 1H Double‐Quantum NMR Study</title><author>Guo, Xiaoai ; Theissen, Solveig ; Claussen, Jan ; Hildebrand, Viet ; Kamphus, Juliane ; Wilhelm, Manfred ; Luy, Burkhard ; Guthausen, Gisela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g1550-16d6a00b4e9bf3f3671cddd4a62922b32211193ef0d08010aad0195cbea175e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>1H double‐quantum NMR</topic><topic>Chain mobility</topic><topic>Crosslinking</topic><topic>Hydrogels</topic><topic>network defects</topic><topic>Network topologies</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Parameters</topic><topic>residual dipolar coupling</topic><topic>Superabsorbent polymers</topic><topic>Synthesis</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Xiaoai</creatorcontrib><creatorcontrib>Theissen, Solveig</creatorcontrib><creatorcontrib>Claussen, Jan</creatorcontrib><creatorcontrib>Hildebrand, Viet</creatorcontrib><creatorcontrib>Kamphus, Juliane</creatorcontrib><creatorcontrib>Wilhelm, Manfred</creatorcontrib><creatorcontrib>Luy, Burkhard</creatorcontrib><creatorcontrib>Guthausen, Gisela</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Macromolecular chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Xiaoai</au><au>Theissen, Solveig</au><au>Claussen, Jan</au><au>Hildebrand, Viet</au><au>Kamphus, Juliane</au><au>Wilhelm, Manfred</au><au>Luy, Burkhard</au><au>Guthausen, Gisela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological Insight into Superabsorbent Hydrogel Network Structures: a 1H Double‐Quantum NMR Study</atitle><jtitle>Macromolecular chemistry and physics</jtitle><date>2018-07</date><risdate>2018</risdate><volume>219</volume><issue>13</issue><epage>n/a</epage><issn>1022-1352</issn><eissn>1521-3935</eissn><abstract>Superabsorbent polymer (SAP) hydrogels have pronounced water‐absorbing and water‐storing capacities, which are essential for numerous potential applications. It remains a challenge to better understand the network topology because of their amorphous and anisotropic structures. Synthesis parameters such as monomer concentration, degree of neutralization and crosslinking, and surface crosslinking are varied to correlate structural changes in the network with low‐field proton double‐quantum (1H DQ) NMR results. 1H DQ‐NMR data are processed by a reliable, user‐independent analysis approach to determine the fractions of network defects, of mobile sol components, and of network chains as well as the residual dipolar coupling distribution in SAPs. In addition, results obtained by applying different distributions to describe the DQ buildup curves are quantified and compared. The correlation between topological and synthesis parameters as well as the impact of temperature, swelling, and solvent of SAP on DQ signals is investigated and discussed.
Superabsorbent hydrogel network structures are investigated by low‐field proton double‐quantum (1H DQ) NMR. A user‐independent approach is proposed for reliable data processing, opening up the possibility for automation of data analysis regarding quality control application of low‐field 1H DQ‐NMR. The results lead to a better understanding of the network topology, local mobility, and heterogeneity of hydrogels and their correlation with synthesis parameters.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/macp.201800100</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-1352 |
ispartof | Macromolecular chemistry and physics, 2018-07, Vol.219 (13), p.n/a |
issn | 1022-1352 1521-3935 |
language | eng |
recordid | cdi_proquest_journals_2064215370 |
source | Access via Wiley Online Library |
subjects | 1H double‐quantum NMR Chain mobility Crosslinking Hydrogels network defects Network topologies NMR Nuclear magnetic resonance Parameters residual dipolar coupling Superabsorbent polymers Synthesis Wireless networks |
title | Topological Insight into Superabsorbent Hydrogel Network Structures: a 1H Double‐Quantum NMR Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A51%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20Insight%20into%20Superabsorbent%20Hydrogel%20Network%20Structures:%20a%201H%20Double%E2%80%90Quantum%20NMR%20Study&rft.jtitle=Macromolecular%20chemistry%20and%20physics&rft.au=Guo,%20Xiaoai&rft.date=2018-07&rft.volume=219&rft.issue=13&rft.epage=n/a&rft.issn=1022-1352&rft.eissn=1521-3935&rft_id=info:doi/10.1002/macp.201800100&rft_dat=%3Cproquest_wiley%3E2064215370%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2064215370&rft_id=info:pmid/&rfr_iscdi=true |