Finite difference approximation for nonlinear Schrödinger equations with application to blow-up computation

This paper presents a coherent analysis of the finite difference method to nonlinear Schrödinger (NLS) equations in one spatial dimension. We use the discrete H 1 framework to establish well-posedness and error estimates in the L ∞ norm. The nonlinearity f ( u ) of a NLS equation is assumed to satis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japan journal of industrial and applied mathematics 2016-07, Vol.33 (2), p.427-470
Hauptverfasser: Saito, Norikazu, Sasaki, Takiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 470
container_issue 2
container_start_page 427
container_title Japan journal of industrial and applied mathematics
container_volume 33
creator Saito, Norikazu
Sasaki, Takiko
description This paper presents a coherent analysis of the finite difference method to nonlinear Schrödinger (NLS) equations in one spatial dimension. We use the discrete H 1 framework to establish well-posedness and error estimates in the L ∞ norm. The nonlinearity f ( u ) of a NLS equation is assumed to satisfy only a growth condition. We apply our results to computation of blow-up solutions for a NLS equation with the nonlinearity f ( u ) = - | u | 2 p , p being a positive real number. Particularly, we offer the numerical blow-up time T ( h , τ ) , where h and τ are discretization parameters of space and time variables. We prove that T ( h , τ ) converges to the blow-up time T ∞ of the solution of the original NLS equation. Several numerical examples are presented to confirm the validity of theoretical results. Furthermore, we infer from numerical investigation that the convergence of T ( h , τ ) is at a second order rate in τ if the Crank–Nicolson scheme is applied to time discretization.
doi_str_mv 10.1007/s13160-016-0218-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2063805834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2063805834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-77959be77acfc12096bb637c43d37f041e17d1680d7ec43413949ca6e90ae9c13</originalsourceid><addsrcrecordid>eNp1kM1KAzEURoMoWKsP4C7gevTeZpqfpRSrQsGFCu7CNJOxKdPJNJmh-mK-gC9m2hFcuQrcfOdevkPIJcI1AoibiAw5ZIA8gwnKTB6REUouM8XE2zEZgUo_AmB6Ss5iXAPkXCKOSD13jessLV1V2WAbY2nRtsF_uE3ROd_Qygfa-KZ2jS0CfTar8P1VuubdBmq3_SET6c51qz1XOzNQnafL2u-yvqXGb9q-O4zPyUlV1NFe_L5j8jq_e5k9ZIun-8fZ7SIzqUSXCaGmammFKExlcAKKL5ecCZOzkokKcrQoSuQSSmHTMEemcmUKbhUUVhlkY3I17E1Ftr2NnV77PjTppJ4AZxKmkuUphUPKBB9jsJVuQ2odPjWC3kvVg1SdpOq9VC0TMxmYmLJ7CX-b_4d-AJxcfKE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2063805834</pqid></control><display><type>article</type><title>Finite difference approximation for nonlinear Schrödinger equations with application to blow-up computation</title><source>Springer Nature - Complete Springer Journals</source><creator>Saito, Norikazu ; Sasaki, Takiko</creator><creatorcontrib>Saito, Norikazu ; Sasaki, Takiko</creatorcontrib><description>This paper presents a coherent analysis of the finite difference method to nonlinear Schrödinger (NLS) equations in one spatial dimension. We use the discrete H 1 framework to establish well-posedness and error estimates in the L ∞ norm. The nonlinearity f ( u ) of a NLS equation is assumed to satisfy only a growth condition. We apply our results to computation of blow-up solutions for a NLS equation with the nonlinearity f ( u ) = - | u | 2 p , p being a positive real number. Particularly, we offer the numerical blow-up time T ( h , τ ) , where h and τ are discretization parameters of space and time variables. We prove that T ( h , τ ) converges to the blow-up time T ∞ of the solution of the original NLS equation. Several numerical examples are presented to confirm the validity of theoretical results. Furthermore, we infer from numerical investigation that the convergence of T ( h , τ ) is at a second order rate in τ if the Crank–Nicolson scheme is applied to time discretization.</description><identifier>ISSN: 0916-7005</identifier><identifier>EISSN: 1868-937X</identifier><identifier>DOI: 10.1007/s13160-016-0218-8</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Applications of Mathematics ; Computation ; Computational Mathematics and Numerical Analysis ; Convergence ; Discretization ; Finite difference method ; Mathematics ; Mathematics and Statistics ; Nonlinear equations ; Nonlinearity ; Original Paper ; Schrodinger equation ; Well posed problems</subject><ispartof>Japan journal of industrial and applied mathematics, 2016-07, Vol.33 (2), p.427-470</ispartof><rights>The JJIAM Publishing Committee and Springer Japan 2016</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-77959be77acfc12096bb637c43d37f041e17d1680d7ec43413949ca6e90ae9c13</citedby><cites>FETCH-LOGICAL-c316t-77959be77acfc12096bb637c43d37f041e17d1680d7ec43413949ca6e90ae9c13</cites><orcidid>0000-0002-2271-6355</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13160-016-0218-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13160-016-0218-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Saito, Norikazu</creatorcontrib><creatorcontrib>Sasaki, Takiko</creatorcontrib><title>Finite difference approximation for nonlinear Schrödinger equations with application to blow-up computation</title><title>Japan journal of industrial and applied mathematics</title><addtitle>Japan J. Indust. Appl. Math</addtitle><description>This paper presents a coherent analysis of the finite difference method to nonlinear Schrödinger (NLS) equations in one spatial dimension. We use the discrete H 1 framework to establish well-posedness and error estimates in the L ∞ norm. The nonlinearity f ( u ) of a NLS equation is assumed to satisfy only a growth condition. We apply our results to computation of blow-up solutions for a NLS equation with the nonlinearity f ( u ) = - | u | 2 p , p being a positive real number. Particularly, we offer the numerical blow-up time T ( h , τ ) , where h and τ are discretization parameters of space and time variables. We prove that T ( h , τ ) converges to the blow-up time T ∞ of the solution of the original NLS equation. Several numerical examples are presented to confirm the validity of theoretical results. Furthermore, we infer from numerical investigation that the convergence of T ( h , τ ) is at a second order rate in τ if the Crank–Nicolson scheme is applied to time discretization.</description><subject>Applications of Mathematics</subject><subject>Computation</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Convergence</subject><subject>Discretization</subject><subject>Finite difference method</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear equations</subject><subject>Nonlinearity</subject><subject>Original Paper</subject><subject>Schrodinger equation</subject><subject>Well posed problems</subject><issn>0916-7005</issn><issn>1868-937X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEURoMoWKsP4C7gevTeZpqfpRSrQsGFCu7CNJOxKdPJNJmh-mK-gC9m2hFcuQrcfOdevkPIJcI1AoibiAw5ZIA8gwnKTB6REUouM8XE2zEZgUo_AmB6Ss5iXAPkXCKOSD13jessLV1V2WAbY2nRtsF_uE3ROd_Qygfa-KZ2jS0CfTar8P1VuubdBmq3_SET6c51qz1XOzNQnafL2u-yvqXGb9q-O4zPyUlV1NFe_L5j8jq_e5k9ZIun-8fZ7SIzqUSXCaGmammFKExlcAKKL5ecCZOzkokKcrQoSuQSSmHTMEemcmUKbhUUVhlkY3I17E1Ftr2NnV77PjTppJ4AZxKmkuUphUPKBB9jsJVuQ2odPjWC3kvVg1SdpOq9VC0TMxmYmLJ7CX-b_4d-AJxcfKE</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Saito, Norikazu</creator><creator>Sasaki, Takiko</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2271-6355</orcidid></search><sort><creationdate>20160701</creationdate><title>Finite difference approximation for nonlinear Schrödinger equations with application to blow-up computation</title><author>Saito, Norikazu ; Sasaki, Takiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-77959be77acfc12096bb637c43d37f041e17d1680d7ec43413949ca6e90ae9c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applications of Mathematics</topic><topic>Computation</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Convergence</topic><topic>Discretization</topic><topic>Finite difference method</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear equations</topic><topic>Nonlinearity</topic><topic>Original Paper</topic><topic>Schrodinger equation</topic><topic>Well posed problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saito, Norikazu</creatorcontrib><creatorcontrib>Sasaki, Takiko</creatorcontrib><collection>CrossRef</collection><jtitle>Japan journal of industrial and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saito, Norikazu</au><au>Sasaki, Takiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite difference approximation for nonlinear Schrödinger equations with application to blow-up computation</atitle><jtitle>Japan journal of industrial and applied mathematics</jtitle><stitle>Japan J. Indust. Appl. Math</stitle><date>2016-07-01</date><risdate>2016</risdate><volume>33</volume><issue>2</issue><spage>427</spage><epage>470</epage><pages>427-470</pages><issn>0916-7005</issn><eissn>1868-937X</eissn><abstract>This paper presents a coherent analysis of the finite difference method to nonlinear Schrödinger (NLS) equations in one spatial dimension. We use the discrete H 1 framework to establish well-posedness and error estimates in the L ∞ norm. The nonlinearity f ( u ) of a NLS equation is assumed to satisfy only a growth condition. We apply our results to computation of blow-up solutions for a NLS equation with the nonlinearity f ( u ) = - | u | 2 p , p being a positive real number. Particularly, we offer the numerical blow-up time T ( h , τ ) , where h and τ are discretization parameters of space and time variables. We prove that T ( h , τ ) converges to the blow-up time T ∞ of the solution of the original NLS equation. Several numerical examples are presented to confirm the validity of theoretical results. Furthermore, we infer from numerical investigation that the convergence of T ( h , τ ) is at a second order rate in τ if the Crank–Nicolson scheme is applied to time discretization.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s13160-016-0218-8</doi><tpages>44</tpages><orcidid>https://orcid.org/0000-0002-2271-6355</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0916-7005
ispartof Japan journal of industrial and applied mathematics, 2016-07, Vol.33 (2), p.427-470
issn 0916-7005
1868-937X
language eng
recordid cdi_proquest_journals_2063805834
source Springer Nature - Complete Springer Journals
subjects Applications of Mathematics
Computation
Computational Mathematics and Numerical Analysis
Convergence
Discretization
Finite difference method
Mathematics
Mathematics and Statistics
Nonlinear equations
Nonlinearity
Original Paper
Schrodinger equation
Well posed problems
title Finite difference approximation for nonlinear Schrödinger equations with application to blow-up computation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T19%3A21%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20difference%20approximation%20for%20nonlinear%20Schr%C3%B6dinger%20equations%20with%20application%20to%20blow-up%20computation&rft.jtitle=Japan%20journal%20of%20industrial%20and%20applied%20mathematics&rft.au=Saito,%20Norikazu&rft.date=2016-07-01&rft.volume=33&rft.issue=2&rft.spage=427&rft.epage=470&rft.pages=427-470&rft.issn=0916-7005&rft.eissn=1868-937X&rft_id=info:doi/10.1007/s13160-016-0218-8&rft_dat=%3Cproquest_cross%3E2063805834%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2063805834&rft_id=info:pmid/&rfr_iscdi=true