Can One Bind Three Electrons with a Single Proton?
Of course not for an ideal H – – atom. But with the help of an intense homogeneous magnetic field B , the question deserves to be reconsidered. It is known (see, e.g. Baumgartner et al. in Commun Math Phys 212(3):703–724, 2000; Brummelhuis and Duclos in J Math Phys 47:032103, 2006) that as B → ∞ and...
Gespeichert in:
Veröffentlicht in: | FEW-BODY SYSTEMS 2009-05, Vol.45 (2-4), p.173-177 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 177 |
---|---|
container_issue | 2-4 |
container_start_page | 173 |
container_title | FEW-BODY SYSTEMS |
container_volume | 45 |
creator | Bressanini, D. Brummelhuis, R. Duclos, P. Ruamps, R. |
description | Of course not for an ideal H
– –
atom. But with the help of an intense homogeneous magnetic field
B
, the question deserves to be reconsidered. It is known (see, e.g. Baumgartner et al. in Commun Math Phys 212(3):703–724, 2000; Brummelhuis and Duclos in J Math Phys 47:032103, 2006) that as
B
→ ∞ and in the clamped nucleus approximation, this ion is described by a one-dimensional Hamiltonian
where
N
= 3,
Z
= 1 is the charge of the nucleus, and
δ
stands for the well known “delta” point interaction. We present an extension of the “skeleton method” (Cornean et al. in Few-Body Syst 38(2–4):125–131, 2006; Proc Symp Pure Math AMS 77:657–672, 2008) to the case of three degree of freedom. This is a tool, that we learn from Rosenthal (J Chem Phys 35(5):2474–2483, 1971) for the case
N
= 2, which reduces the spectral analysis of (1) to determining the kernel a system of linear integral operators acting on the supports of the delta interactions. As an application of this method we present numerical results which indicates that (1) has a bound state for
Z
= 1 and
N
= 3. |
doi_str_mv | 10.1007/s00601-009-0018-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_journals_206378413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1913147041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-b4b278a8bfc4852e441ab5542f74fad329e9828cb266bbdcaec43c8e1564dc493</originalsourceid><addsrcrecordid>eNp1kNFKwzAUhoMoOKcP4F3wzotqTpI2yZXMMZ0wmOC8Dmmabh01nUmn-PZmVPRKOOFA-P6Pw4_QJZAbIETcRkIKAhkhKj2QmThCI-CMZjkHOEYjAkJkQhXsFJ3FuE1MroCMEJ0aj5fe4fvGV3i1Cc7hWetsHzof8WfTb7DBL41ftw4_h67v_N05OqlNG93Fzx6j14fZajrPFsvHp-lkkVmmaJ-VvKRCGlnWlsucOs7BlHnOaS14bSpGlVOSSlvSoijLyhpnObPSQV7wynLFxuh68G5Mq3eheTPhS3em0fPJQh_-CGEFT_MBib0a2F3o3vcu9nrb7YNP52lKCiYkB5YgGCAbuhiDq3-tQPShRT20mMRKH1rUImXokImJ9WsX_sT_h74B8thxoA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>206378413</pqid></control><display><type>article</type><title>Can One Bind Three Electrons with a Single Proton?</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bressanini, D. ; Brummelhuis, R. ; Duclos, P. ; Ruamps, R.</creator><creatorcontrib>Bressanini, D. ; Brummelhuis, R. ; Duclos, P. ; Ruamps, R.</creatorcontrib><description>Of course not for an ideal H
– –
atom. But with the help of an intense homogeneous magnetic field
B
, the question deserves to be reconsidered. It is known (see, e.g. Baumgartner et al. in Commun Math Phys 212(3):703–724, 2000; Brummelhuis and Duclos in J Math Phys 47:032103, 2006) that as
B
→ ∞ and in the clamped nucleus approximation, this ion is described by a one-dimensional Hamiltonian
where
N
= 3,
Z
= 1 is the charge of the nucleus, and
δ
stands for the well known “delta” point interaction. We present an extension of the “skeleton method” (Cornean et al. in Few-Body Syst 38(2–4):125–131, 2006; Proc Symp Pure Math AMS 77:657–672, 2008) to the case of three degree of freedom. This is a tool, that we learn from Rosenthal (J Chem Phys 35(5):2474–2483, 1971) for the case
N
= 2, which reduces the spectral analysis of (1) to determining the kernel a system of linear integral operators acting on the supports of the delta interactions. As an application of this method we present numerical results which indicates that (1) has a bound state for
Z
= 1 and
N
= 3.</description><identifier>ISSN: 0177-7963</identifier><identifier>EISSN: 1432-5411</identifier><identifier>DOI: 10.1007/s00601-009-0018-7</identifier><identifier>CODEN: FBSYEQ</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Atomic ; Hadrons ; Heavy Ions ; Mathematical Physics ; Mathematics ; Molecular ; Nuclear Physics ; Optical and Plasma Physics ; Particle and Nuclear Physics ; Physics ; Physics and Astronomy</subject><ispartof>FEW-BODY SYSTEMS, 2009-05, Vol.45 (2-4), p.173-177</ispartof><rights>Springer-Verlag 2009</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-b4b278a8bfc4852e441ab5542f74fad329e9828cb266bbdcaec43c8e1564dc493</citedby><cites>FETCH-LOGICAL-c392t-b4b278a8bfc4852e441ab5542f74fad329e9828cb266bbdcaec43c8e1564dc493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00601-009-0018-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00601-009-0018-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,309,310,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00364364$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bressanini, D.</creatorcontrib><creatorcontrib>Brummelhuis, R.</creatorcontrib><creatorcontrib>Duclos, P.</creatorcontrib><creatorcontrib>Ruamps, R.</creatorcontrib><title>Can One Bind Three Electrons with a Single Proton?</title><title>FEW-BODY SYSTEMS</title><addtitle>Few-Body Syst</addtitle><description>Of course not for an ideal H
– –
atom. But with the help of an intense homogeneous magnetic field
B
, the question deserves to be reconsidered. It is known (see, e.g. Baumgartner et al. in Commun Math Phys 212(3):703–724, 2000; Brummelhuis and Duclos in J Math Phys 47:032103, 2006) that as
B
→ ∞ and in the clamped nucleus approximation, this ion is described by a one-dimensional Hamiltonian
where
N
= 3,
Z
= 1 is the charge of the nucleus, and
δ
stands for the well known “delta” point interaction. We present an extension of the “skeleton method” (Cornean et al. in Few-Body Syst 38(2–4):125–131, 2006; Proc Symp Pure Math AMS 77:657–672, 2008) to the case of three degree of freedom. This is a tool, that we learn from Rosenthal (J Chem Phys 35(5):2474–2483, 1971) for the case
N
= 2, which reduces the spectral analysis of (1) to determining the kernel a system of linear integral operators acting on the supports of the delta interactions. As an application of this method we present numerical results which indicates that (1) has a bound state for
Z
= 1 and
N
= 3.</description><subject>Atomic</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Molecular</subject><subject>Nuclear Physics</subject><subject>Optical and Plasma Physics</subject><subject>Particle and Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><issn>0177-7963</issn><issn>1432-5411</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kNFKwzAUhoMoOKcP4F3wzotqTpI2yZXMMZ0wmOC8Dmmabh01nUmn-PZmVPRKOOFA-P6Pw4_QJZAbIETcRkIKAhkhKj2QmThCI-CMZjkHOEYjAkJkQhXsFJ3FuE1MroCMEJ0aj5fe4fvGV3i1Cc7hWetsHzof8WfTb7DBL41ftw4_h67v_N05OqlNG93Fzx6j14fZajrPFsvHp-lkkVmmaJ-VvKRCGlnWlsucOs7BlHnOaS14bSpGlVOSSlvSoijLyhpnObPSQV7wynLFxuh68G5Mq3eheTPhS3em0fPJQh_-CGEFT_MBib0a2F3o3vcu9nrb7YNP52lKCiYkB5YgGCAbuhiDq3-tQPShRT20mMRKH1rUImXokImJ9WsX_sT_h74B8thxoA</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Bressanini, D.</creator><creator>Brummelhuis, R.</creator><creator>Duclos, P.</creator><creator>Ruamps, R.</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><general>Springer-Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20090501</creationdate><title>Can One Bind Three Electrons with a Single Proton?</title><author>Bressanini, D. ; Brummelhuis, R. ; Duclos, P. ; Ruamps, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-b4b278a8bfc4852e441ab5542f74fad329e9828cb266bbdcaec43c8e1564dc493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Atomic</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Molecular</topic><topic>Nuclear Physics</topic><topic>Optical and Plasma Physics</topic><topic>Particle and Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bressanini, D.</creatorcontrib><creatorcontrib>Brummelhuis, R.</creatorcontrib><creatorcontrib>Duclos, P.</creatorcontrib><creatorcontrib>Ruamps, R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>FEW-BODY SYSTEMS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bressanini, D.</au><au>Brummelhuis, R.</au><au>Duclos, P.</au><au>Ruamps, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Can One Bind Three Electrons with a Single Proton?</atitle><jtitle>FEW-BODY SYSTEMS</jtitle><stitle>Few-Body Syst</stitle><date>2009-05-01</date><risdate>2009</risdate><volume>45</volume><issue>2-4</issue><spage>173</spage><epage>177</epage><pages>173-177</pages><issn>0177-7963</issn><eissn>1432-5411</eissn><coden>FBSYEQ</coden><abstract>Of course not for an ideal H
– –
atom. But with the help of an intense homogeneous magnetic field
B
, the question deserves to be reconsidered. It is known (see, e.g. Baumgartner et al. in Commun Math Phys 212(3):703–724, 2000; Brummelhuis and Duclos in J Math Phys 47:032103, 2006) that as
B
→ ∞ and in the clamped nucleus approximation, this ion is described by a one-dimensional Hamiltonian
where
N
= 3,
Z
= 1 is the charge of the nucleus, and
δ
stands for the well known “delta” point interaction. We present an extension of the “skeleton method” (Cornean et al. in Few-Body Syst 38(2–4):125–131, 2006; Proc Symp Pure Math AMS 77:657–672, 2008) to the case of three degree of freedom. This is a tool, that we learn from Rosenthal (J Chem Phys 35(5):2474–2483, 1971) for the case
N
= 2, which reduces the spectral analysis of (1) to determining the kernel a system of linear integral operators acting on the supports of the delta interactions. As an application of this method we present numerical results which indicates that (1) has a bound state for
Z
= 1 and
N
= 3.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00601-009-0018-7</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0177-7963 |
ispartof | FEW-BODY SYSTEMS, 2009-05, Vol.45 (2-4), p.173-177 |
issn | 0177-7963 1432-5411 |
language | eng |
recordid | cdi_proquest_journals_206378413 |
source | SpringerLink Journals - AutoHoldings |
subjects | Atomic Hadrons Heavy Ions Mathematical Physics Mathematics Molecular Nuclear Physics Optical and Plasma Physics Particle and Nuclear Physics Physics Physics and Astronomy |
title | Can One Bind Three Electrons with a Single Proton? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A33%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Can%20One%20Bind%20Three%20Electrons%20with%20a%20Single%20Proton?&rft.jtitle=FEW-BODY%20SYSTEMS&rft.au=Bressanini,%20D.&rft.date=2009-05-01&rft.volume=45&rft.issue=2-4&rft.spage=173&rft.epage=177&rft.pages=173-177&rft.issn=0177-7963&rft.eissn=1432-5411&rft.coden=FBSYEQ&rft_id=info:doi/10.1007/s00601-009-0018-7&rft_dat=%3Cproquest_hal_p%3E1913147041%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=206378413&rft_id=info:pmid/&rfr_iscdi=true |