Can One Bind Three Electrons with a Single Proton?

Of course not for an ideal H – – atom. But with the help of an intense homogeneous magnetic field B , the question deserves to be reconsidered. It is known (see, e.g. Baumgartner et al. in Commun Math Phys 212(3):703–724, 2000; Brummelhuis and Duclos in J Math Phys 47:032103, 2006) that as B → ∞ and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:FEW-BODY SYSTEMS 2009-05, Vol.45 (2-4), p.173-177
Hauptverfasser: Bressanini, D., Brummelhuis, R., Duclos, P., Ruamps, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 177
container_issue 2-4
container_start_page 173
container_title FEW-BODY SYSTEMS
container_volume 45
creator Bressanini, D.
Brummelhuis, R.
Duclos, P.
Ruamps, R.
description Of course not for an ideal H – – atom. But with the help of an intense homogeneous magnetic field B , the question deserves to be reconsidered. It is known (see, e.g. Baumgartner et al. in Commun Math Phys 212(3):703–724, 2000; Brummelhuis and Duclos in J Math Phys 47:032103, 2006) that as B → ∞ and in the clamped nucleus approximation, this ion is described by a one-dimensional Hamiltonian where N  = 3, Z  = 1 is the charge of the nucleus, and δ stands for the well known “delta” point interaction. We present an extension of the “skeleton method” (Cornean et al. in Few-Body Syst 38(2–4):125–131, 2006; Proc Symp Pure Math AMS 77:657–672, 2008) to the case of three degree of freedom. This is a tool, that we learn from Rosenthal (J Chem Phys 35(5):2474–2483, 1971) for the case N  = 2, which reduces the spectral analysis of (1) to determining the kernel a system of linear integral operators acting on the supports of the delta interactions. As an application of this method we present numerical results which indicates that (1) has a bound state for Z  = 1 and N  = 3.
doi_str_mv 10.1007/s00601-009-0018-7
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_journals_206378413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1913147041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-b4b278a8bfc4852e441ab5542f74fad329e9828cb266bbdcaec43c8e1564dc493</originalsourceid><addsrcrecordid>eNp1kNFKwzAUhoMoOKcP4F3wzotqTpI2yZXMMZ0wmOC8Dmmabh01nUmn-PZmVPRKOOFA-P6Pw4_QJZAbIETcRkIKAhkhKj2QmThCI-CMZjkHOEYjAkJkQhXsFJ3FuE1MroCMEJ0aj5fe4fvGV3i1Cc7hWetsHzof8WfTb7DBL41ftw4_h67v_N05OqlNG93Fzx6j14fZajrPFsvHp-lkkVmmaJ-VvKRCGlnWlsucOs7BlHnOaS14bSpGlVOSSlvSoijLyhpnObPSQV7wynLFxuh68G5Mq3eheTPhS3em0fPJQh_-CGEFT_MBib0a2F3o3vcu9nrb7YNP52lKCiYkB5YgGCAbuhiDq3-tQPShRT20mMRKH1rUImXokImJ9WsX_sT_h74B8thxoA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>206378413</pqid></control><display><type>article</type><title>Can One Bind Three Electrons with a Single Proton?</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bressanini, D. ; Brummelhuis, R. ; Duclos, P. ; Ruamps, R.</creator><creatorcontrib>Bressanini, D. ; Brummelhuis, R. ; Duclos, P. ; Ruamps, R.</creatorcontrib><description>Of course not for an ideal H – – atom. But with the help of an intense homogeneous magnetic field B , the question deserves to be reconsidered. It is known (see, e.g. Baumgartner et al. in Commun Math Phys 212(3):703–724, 2000; Brummelhuis and Duclos in J Math Phys 47:032103, 2006) that as B → ∞ and in the clamped nucleus approximation, this ion is described by a one-dimensional Hamiltonian where N  = 3, Z  = 1 is the charge of the nucleus, and δ stands for the well known “delta” point interaction. We present an extension of the “skeleton method” (Cornean et al. in Few-Body Syst 38(2–4):125–131, 2006; Proc Symp Pure Math AMS 77:657–672, 2008) to the case of three degree of freedom. This is a tool, that we learn from Rosenthal (J Chem Phys 35(5):2474–2483, 1971) for the case N  = 2, which reduces the spectral analysis of (1) to determining the kernel a system of linear integral operators acting on the supports of the delta interactions. As an application of this method we present numerical results which indicates that (1) has a bound state for Z  = 1 and N  = 3.</description><identifier>ISSN: 0177-7963</identifier><identifier>EISSN: 1432-5411</identifier><identifier>DOI: 10.1007/s00601-009-0018-7</identifier><identifier>CODEN: FBSYEQ</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Atomic ; Hadrons ; Heavy Ions ; Mathematical Physics ; Mathematics ; Molecular ; Nuclear Physics ; Optical and Plasma Physics ; Particle and Nuclear Physics ; Physics ; Physics and Astronomy</subject><ispartof>FEW-BODY SYSTEMS, 2009-05, Vol.45 (2-4), p.173-177</ispartof><rights>Springer-Verlag 2009</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-b4b278a8bfc4852e441ab5542f74fad329e9828cb266bbdcaec43c8e1564dc493</citedby><cites>FETCH-LOGICAL-c392t-b4b278a8bfc4852e441ab5542f74fad329e9828cb266bbdcaec43c8e1564dc493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00601-009-0018-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00601-009-0018-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,309,310,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00364364$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bressanini, D.</creatorcontrib><creatorcontrib>Brummelhuis, R.</creatorcontrib><creatorcontrib>Duclos, P.</creatorcontrib><creatorcontrib>Ruamps, R.</creatorcontrib><title>Can One Bind Three Electrons with a Single Proton?</title><title>FEW-BODY SYSTEMS</title><addtitle>Few-Body Syst</addtitle><description>Of course not for an ideal H – – atom. But with the help of an intense homogeneous magnetic field B , the question deserves to be reconsidered. It is known (see, e.g. Baumgartner et al. in Commun Math Phys 212(3):703–724, 2000; Brummelhuis and Duclos in J Math Phys 47:032103, 2006) that as B → ∞ and in the clamped nucleus approximation, this ion is described by a one-dimensional Hamiltonian where N  = 3, Z  = 1 is the charge of the nucleus, and δ stands for the well known “delta” point interaction. We present an extension of the “skeleton method” (Cornean et al. in Few-Body Syst 38(2–4):125–131, 2006; Proc Symp Pure Math AMS 77:657–672, 2008) to the case of three degree of freedom. This is a tool, that we learn from Rosenthal (J Chem Phys 35(5):2474–2483, 1971) for the case N  = 2, which reduces the spectral analysis of (1) to determining the kernel a system of linear integral operators acting on the supports of the delta interactions. As an application of this method we present numerical results which indicates that (1) has a bound state for Z  = 1 and N  = 3.</description><subject>Atomic</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Molecular</subject><subject>Nuclear Physics</subject><subject>Optical and Plasma Physics</subject><subject>Particle and Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><issn>0177-7963</issn><issn>1432-5411</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kNFKwzAUhoMoOKcP4F3wzotqTpI2yZXMMZ0wmOC8Dmmabh01nUmn-PZmVPRKOOFA-P6Pw4_QJZAbIETcRkIKAhkhKj2QmThCI-CMZjkHOEYjAkJkQhXsFJ3FuE1MroCMEJ0aj5fe4fvGV3i1Cc7hWetsHzof8WfTb7DBL41ftw4_h67v_N05OqlNG93Fzx6j14fZajrPFsvHp-lkkVmmaJ-VvKRCGlnWlsucOs7BlHnOaS14bSpGlVOSSlvSoijLyhpnObPSQV7wynLFxuh68G5Mq3eheTPhS3em0fPJQh_-CGEFT_MBib0a2F3o3vcu9nrb7YNP52lKCiYkB5YgGCAbuhiDq3-tQPShRT20mMRKH1rUImXokImJ9WsX_sT_h74B8thxoA</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Bressanini, D.</creator><creator>Brummelhuis, R.</creator><creator>Duclos, P.</creator><creator>Ruamps, R.</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><general>Springer-Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20090501</creationdate><title>Can One Bind Three Electrons with a Single Proton?</title><author>Bressanini, D. ; Brummelhuis, R. ; Duclos, P. ; Ruamps, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-b4b278a8bfc4852e441ab5542f74fad329e9828cb266bbdcaec43c8e1564dc493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Atomic</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Molecular</topic><topic>Nuclear Physics</topic><topic>Optical and Plasma Physics</topic><topic>Particle and Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bressanini, D.</creatorcontrib><creatorcontrib>Brummelhuis, R.</creatorcontrib><creatorcontrib>Duclos, P.</creatorcontrib><creatorcontrib>Ruamps, R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>FEW-BODY SYSTEMS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bressanini, D.</au><au>Brummelhuis, R.</au><au>Duclos, P.</au><au>Ruamps, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Can One Bind Three Electrons with a Single Proton?</atitle><jtitle>FEW-BODY SYSTEMS</jtitle><stitle>Few-Body Syst</stitle><date>2009-05-01</date><risdate>2009</risdate><volume>45</volume><issue>2-4</issue><spage>173</spage><epage>177</epage><pages>173-177</pages><issn>0177-7963</issn><eissn>1432-5411</eissn><coden>FBSYEQ</coden><abstract>Of course not for an ideal H – – atom. But with the help of an intense homogeneous magnetic field B , the question deserves to be reconsidered. It is known (see, e.g. Baumgartner et al. in Commun Math Phys 212(3):703–724, 2000; Brummelhuis and Duclos in J Math Phys 47:032103, 2006) that as B → ∞ and in the clamped nucleus approximation, this ion is described by a one-dimensional Hamiltonian where N  = 3, Z  = 1 is the charge of the nucleus, and δ stands for the well known “delta” point interaction. We present an extension of the “skeleton method” (Cornean et al. in Few-Body Syst 38(2–4):125–131, 2006; Proc Symp Pure Math AMS 77:657–672, 2008) to the case of three degree of freedom. This is a tool, that we learn from Rosenthal (J Chem Phys 35(5):2474–2483, 1971) for the case N  = 2, which reduces the spectral analysis of (1) to determining the kernel a system of linear integral operators acting on the supports of the delta interactions. As an application of this method we present numerical results which indicates that (1) has a bound state for Z  = 1 and N  = 3.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00601-009-0018-7</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0177-7963
ispartof FEW-BODY SYSTEMS, 2009-05, Vol.45 (2-4), p.173-177
issn 0177-7963
1432-5411
language eng
recordid cdi_proquest_journals_206378413
source SpringerLink Journals - AutoHoldings
subjects Atomic
Hadrons
Heavy Ions
Mathematical Physics
Mathematics
Molecular
Nuclear Physics
Optical and Plasma Physics
Particle and Nuclear Physics
Physics
Physics and Astronomy
title Can One Bind Three Electrons with a Single Proton?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A33%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Can%20One%20Bind%20Three%20Electrons%20with%20a%20Single%20Proton?&rft.jtitle=FEW-BODY%20SYSTEMS&rft.au=Bressanini,%20D.&rft.date=2009-05-01&rft.volume=45&rft.issue=2-4&rft.spage=173&rft.epage=177&rft.pages=173-177&rft.issn=0177-7963&rft.eissn=1432-5411&rft.coden=FBSYEQ&rft_id=info:doi/10.1007/s00601-009-0018-7&rft_dat=%3Cproquest_hal_p%3E1913147041%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=206378413&rft_id=info:pmid/&rfr_iscdi=true