Data measurement in research information systems: metrics for the evaluation of data quality

In recent years, research information systems (RIS) have become an integral part of the university’s IT landscape. At the same time, many universities and research institutions are still working on the implementation of such information systems. Research information systems support institutions in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientometrics 2018-06, Vol.115 (3), p.1271-1290
Hauptverfasser: Azeroual, Otmane, Saake, Gunter, Wastl, Jürgen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1290
container_issue 3
container_start_page 1271
container_title Scientometrics
container_volume 115
creator Azeroual, Otmane
Saake, Gunter
Wastl, Jürgen
description In recent years, research information systems (RIS) have become an integral part of the university’s IT landscape. At the same time, many universities and research institutions are still working on the implementation of such information systems. Research information systems support institutions in the measurement, documentation, evaluation and communication of research activities. Implementing such integrative systems requires that institutions assure the quality of the information on research activities entered into them. Since many information and data sources are interwoven, these different data sources can have a negative impact on data quality in different research information systems. Because the topic is currently of interest to many institutions, the aim of the present paper is firstly to consider how data quality can be investigated in the context of RIS, and then to explain how various dimensions of data quality described in the literature can be measured in research information systems. Finally, a framework as a process flow according to UML activity diagram notation is developed for monitoring and improvement of the quality of these data; this framework can be implemented by technical personnel in universities and research institutions.
doi_str_mv 10.1007/s11192-018-2735-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2063771756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2063771756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-449f1dd54c13a08ca68ad57c8de9b6d06b529d3628a6627748485253dece2f3</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWKsP4C7gOprL5DLuxDsUXOhSCGlyxk7pzLRJRujbmzKCK1cnh3z_f-BD6JLRa0apvkmMsZoTygzhWkgij9CMSVM2o9gxmlEmDKmZoKfoLKU1LRlBzQx9PrjscAcujRE66DNuexwhgYt-Vd7NEDuX26HHaZ8ydOm2wDm2PuHyhfMKMHy7zTgxQ4PDoW83uk2b9-fopHGbBBe_c47enx4_7l_I4u359f5uQbxQVSZVVTcsBFl5Jhw13injgtTeBKiXKlC1lLwOQnHjlOJaV6YykksRwANvxBxdTa3bOOxGSNmuhzH25aDlVAmtmZaqUGyifBxSitDYbWw7F_eWUXtQaCeFtii0B4VWlgyfMqmw_RfEv-b_Qz_puXSf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2063771756</pqid></control><display><type>article</type><title>Data measurement in research information systems: metrics for the evaluation of data quality</title><source>SpringerLink Journals - AutoHoldings</source><creator>Azeroual, Otmane ; Saake, Gunter ; Wastl, Jürgen</creator><creatorcontrib>Azeroual, Otmane ; Saake, Gunter ; Wastl, Jürgen</creatorcontrib><description>In recent years, research information systems (RIS) have become an integral part of the university’s IT landscape. At the same time, many universities and research institutions are still working on the implementation of such information systems. Research information systems support institutions in the measurement, documentation, evaluation and communication of research activities. Implementing such integrative systems requires that institutions assure the quality of the information on research activities entered into them. Since many information and data sources are interwoven, these different data sources can have a negative impact on data quality in different research information systems. Because the topic is currently of interest to many institutions, the aim of the present paper is firstly to consider how data quality can be investigated in the context of RIS, and then to explain how various dimensions of data quality described in the literature can be measured in research information systems. Finally, a framework as a process flow according to UML activity diagram notation is developed for monitoring and improvement of the quality of these data; this framework can be implemented by technical personnel in universities and research institutions.</description><identifier>ISSN: 0138-9130</identifier><identifier>EISSN: 1588-2861</identifier><identifier>DOI: 10.1007/s11192-018-2735-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Colleges &amp; universities ; Computer Science ; Data sources ; Evaluation ; Information Storage and Retrieval ; Information systems ; Information technology ; Institutions ; Library Science ; Quality ; Quality assurance ; R&amp;D ; Research &amp; development ; Research institutions ; Systems analysis</subject><ispartof>Scientometrics, 2018-06, Vol.115 (3), p.1271-1290</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2018</rights><rights>Copyright Springer Nature B.V. 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-449f1dd54c13a08ca68ad57c8de9b6d06b529d3628a6627748485253dece2f3</citedby><cites>FETCH-LOGICAL-c364t-449f1dd54c13a08ca68ad57c8de9b6d06b529d3628a6627748485253dece2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11192-018-2735-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11192-018-2735-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Azeroual, Otmane</creatorcontrib><creatorcontrib>Saake, Gunter</creatorcontrib><creatorcontrib>Wastl, Jürgen</creatorcontrib><title>Data measurement in research information systems: metrics for the evaluation of data quality</title><title>Scientometrics</title><addtitle>Scientometrics</addtitle><description>In recent years, research information systems (RIS) have become an integral part of the university’s IT landscape. At the same time, many universities and research institutions are still working on the implementation of such information systems. Research information systems support institutions in the measurement, documentation, evaluation and communication of research activities. Implementing such integrative systems requires that institutions assure the quality of the information on research activities entered into them. Since many information and data sources are interwoven, these different data sources can have a negative impact on data quality in different research information systems. Because the topic is currently of interest to many institutions, the aim of the present paper is firstly to consider how data quality can be investigated in the context of RIS, and then to explain how various dimensions of data quality described in the literature can be measured in research information systems. Finally, a framework as a process flow according to UML activity diagram notation is developed for monitoring and improvement of the quality of these data; this framework can be implemented by technical personnel in universities and research institutions.</description><subject>Colleges &amp; universities</subject><subject>Computer Science</subject><subject>Data sources</subject><subject>Evaluation</subject><subject>Information Storage and Retrieval</subject><subject>Information systems</subject><subject>Information technology</subject><subject>Institutions</subject><subject>Library Science</subject><subject>Quality</subject><subject>Quality assurance</subject><subject>R&amp;D</subject><subject>Research &amp; development</subject><subject>Research institutions</subject><subject>Systems analysis</subject><issn>0138-9130</issn><issn>1588-2861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMoWKsP4C7gOprL5DLuxDsUXOhSCGlyxk7pzLRJRujbmzKCK1cnh3z_f-BD6JLRa0apvkmMsZoTygzhWkgij9CMSVM2o9gxmlEmDKmZoKfoLKU1LRlBzQx9PrjscAcujRE66DNuexwhgYt-Vd7NEDuX26HHaZ8ydOm2wDm2PuHyhfMKMHy7zTgxQ4PDoW83uk2b9-fopHGbBBe_c47enx4_7l_I4u359f5uQbxQVSZVVTcsBFl5Jhw13injgtTeBKiXKlC1lLwOQnHjlOJaV6YykksRwANvxBxdTa3bOOxGSNmuhzH25aDlVAmtmZaqUGyifBxSitDYbWw7F_eWUXtQaCeFtii0B4VWlgyfMqmw_RfEv-b_Qz_puXSf</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Azeroual, Otmane</creator><creator>Saake, Gunter</creator><creator>Wastl, Jürgen</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>E3H</scope><scope>F2A</scope></search><sort><creationdate>20180601</creationdate><title>Data measurement in research information systems: metrics for the evaluation of data quality</title><author>Azeroual, Otmane ; Saake, Gunter ; Wastl, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-449f1dd54c13a08ca68ad57c8de9b6d06b529d3628a6627748485253dece2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Colleges &amp; universities</topic><topic>Computer Science</topic><topic>Data sources</topic><topic>Evaluation</topic><topic>Information Storage and Retrieval</topic><topic>Information systems</topic><topic>Information technology</topic><topic>Institutions</topic><topic>Library Science</topic><topic>Quality</topic><topic>Quality assurance</topic><topic>R&amp;D</topic><topic>Research &amp; development</topic><topic>Research institutions</topic><topic>Systems analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azeroual, Otmane</creatorcontrib><creatorcontrib>Saake, Gunter</creatorcontrib><creatorcontrib>Wastl, Jürgen</creatorcontrib><collection>CrossRef</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><jtitle>Scientometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azeroual, Otmane</au><au>Saake, Gunter</au><au>Wastl, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data measurement in research information systems: metrics for the evaluation of data quality</atitle><jtitle>Scientometrics</jtitle><stitle>Scientometrics</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>115</volume><issue>3</issue><spage>1271</spage><epage>1290</epage><pages>1271-1290</pages><issn>0138-9130</issn><eissn>1588-2861</eissn><abstract>In recent years, research information systems (RIS) have become an integral part of the university’s IT landscape. At the same time, many universities and research institutions are still working on the implementation of such information systems. Research information systems support institutions in the measurement, documentation, evaluation and communication of research activities. Implementing such integrative systems requires that institutions assure the quality of the information on research activities entered into them. Since many information and data sources are interwoven, these different data sources can have a negative impact on data quality in different research information systems. Because the topic is currently of interest to many institutions, the aim of the present paper is firstly to consider how data quality can be investigated in the context of RIS, and then to explain how various dimensions of data quality described in the literature can be measured in research information systems. Finally, a framework as a process flow according to UML activity diagram notation is developed for monitoring and improvement of the quality of these data; this framework can be implemented by technical personnel in universities and research institutions.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11192-018-2735-5</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0138-9130
ispartof Scientometrics, 2018-06, Vol.115 (3), p.1271-1290
issn 0138-9130
1588-2861
language eng
recordid cdi_proquest_journals_2063771756
source SpringerLink Journals - AutoHoldings
subjects Colleges & universities
Computer Science
Data sources
Evaluation
Information Storage and Retrieval
Information systems
Information technology
Institutions
Library Science
Quality
Quality assurance
R&D
Research & development
Research institutions
Systems analysis
title Data measurement in research information systems: metrics for the evaluation of data quality
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A20%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20measurement%20in%20research%20information%20systems:%20metrics%20for%20the%20evaluation%20of%20data%20quality&rft.jtitle=Scientometrics&rft.au=Azeroual,%20Otmane&rft.date=2018-06-01&rft.volume=115&rft.issue=3&rft.spage=1271&rft.epage=1290&rft.pages=1271-1290&rft.issn=0138-9130&rft.eissn=1588-2861&rft_id=info:doi/10.1007/s11192-018-2735-5&rft_dat=%3Cproquest_cross%3E2063771756%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2063771756&rft_id=info:pmid/&rfr_iscdi=true