Singularity formation for the 1D compressible Euler equations with variable damping coefficient
In this paper, we consider some blow-up problems for the 1D Euler equations with time and space dependent damping. We investigate sufficient conditions on initial data and the rate of spatial or time-like decay of the coefficient of damping for the occurrence of the finite time blow-up. In particula...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2018-05, Vol.170, p.70-87 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 87 |
---|---|
container_issue | |
container_start_page | 70 |
container_title | Nonlinear analysis |
container_volume | 170 |
creator | Sugiyama, Yuusuke |
description | In this paper, we consider some blow-up problems for the 1D Euler equations with time and space dependent damping. We investigate sufficient conditions on initial data and the rate of spatial or time-like decay of the coefficient of damping for the occurrence of the finite time blow-up. In particular, our sufficient conditions ensure that the derivative blow-up occurs in finite time with the solution itself and the pressure bounded. Our method is based on simple estimates with Riemann invariant. Furthermore, we give sharp lower and upper estimates of the lifespan of solutions, when initial data are small perturbations of constant states. |
doi_str_mv | 10.1016/j.na.2017.12.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2063753306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X17303139</els_id><sourcerecordid>2063753306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-25fbdeb9fa3785a2710ada31a9693ecdea1320362b8462f62ba9509f5344cc5f3</originalsourceid><addsrcrecordid>eNp1kElPwzAQhS0EEqVw52iJc4KXOGm4oVIWqRIHQOJmOc6YOsrS2k5R_z0O5crpjTTvm-UhdE1JSgnNb5u0VykjtEgpSwnlJ2hGFwVPBKPiFM0Iz1kisvzzHF143xASnTyfIflm-6-xVc6GAzaD61SwQz9VOGwA0wesh27rwHtbtYBXYwsOw278tXn8bcMG7yOtpm6tum0cFxEwxmoLfbhEZ0a1Hq7-dI4-Hlfvy-dk_fr0srxfJ5ozFhImTFVDVRrFi4VQrKBE1YpTVeYlB12DopxNP1SLLGcmqioFKY3gWaa1MHyObo5zt27YjeCDbIbR9XGlZCTnheA8yhyRo0u7wXsHRm6d7ZQ7SErkFKNsZK_kFKOkTMYYI3J3RCBev7fgpJ8e01BbBzrIerD_wz-Xq3rU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2063753306</pqid></control><display><type>article</type><title>Singularity formation for the 1D compressible Euler equations with variable damping coefficient</title><source>Elsevier ScienceDirect Journals</source><creator>Sugiyama, Yuusuke</creator><creatorcontrib>Sugiyama, Yuusuke</creatorcontrib><description>In this paper, we consider some blow-up problems for the 1D Euler equations with time and space dependent damping. We investigate sufficient conditions on initial data and the rate of spatial or time-like decay of the coefficient of damping for the occurrence of the finite time blow-up. In particular, our sufficient conditions ensure that the derivative blow-up occurs in finite time with the solution itself and the pressure bounded. Our method is based on simple estimates with Riemann invariant. Furthermore, we give sharp lower and upper estimates of the lifespan of solutions, when initial data are small perturbations of constant states.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2017.12.013</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Blow-up ; Cauchy problems ; Compressibility ; Damping ; Decay rate ; Euler-Lagrange equation ; Eulers equations ; Lifespan ; Mathematical analysis ; Mathematical problems ; p-system ; Singularity formation ; Spacetime ; Time dependence</subject><ispartof>Nonlinear analysis, 2018-05, Vol.170, p.70-87</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-25fbdeb9fa3785a2710ada31a9693ecdea1320362b8462f62ba9509f5344cc5f3</citedby><cites>FETCH-LOGICAL-c322t-25fbdeb9fa3785a2710ada31a9693ecdea1320362b8462f62ba9509f5344cc5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X17303139$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Sugiyama, Yuusuke</creatorcontrib><title>Singularity formation for the 1D compressible Euler equations with variable damping coefficient</title><title>Nonlinear analysis</title><description>In this paper, we consider some blow-up problems for the 1D Euler equations with time and space dependent damping. We investigate sufficient conditions on initial data and the rate of spatial or time-like decay of the coefficient of damping for the occurrence of the finite time blow-up. In particular, our sufficient conditions ensure that the derivative blow-up occurs in finite time with the solution itself and the pressure bounded. Our method is based on simple estimates with Riemann invariant. Furthermore, we give sharp lower and upper estimates of the lifespan of solutions, when initial data are small perturbations of constant states.</description><subject>Blow-up</subject><subject>Cauchy problems</subject><subject>Compressibility</subject><subject>Damping</subject><subject>Decay rate</subject><subject>Euler-Lagrange equation</subject><subject>Eulers equations</subject><subject>Lifespan</subject><subject>Mathematical analysis</subject><subject>Mathematical problems</subject><subject>p-system</subject><subject>Singularity formation</subject><subject>Spacetime</subject><subject>Time dependence</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kElPwzAQhS0EEqVw52iJc4KXOGm4oVIWqRIHQOJmOc6YOsrS2k5R_z0O5crpjTTvm-UhdE1JSgnNb5u0VykjtEgpSwnlJ2hGFwVPBKPiFM0Iz1kisvzzHF143xASnTyfIflm-6-xVc6GAzaD61SwQz9VOGwA0wesh27rwHtbtYBXYwsOw278tXn8bcMG7yOtpm6tum0cFxEwxmoLfbhEZ0a1Hq7-dI4-Hlfvy-dk_fr0srxfJ5ozFhImTFVDVRrFi4VQrKBE1YpTVeYlB12DopxNP1SLLGcmqioFKY3gWaa1MHyObo5zt27YjeCDbIbR9XGlZCTnheA8yhyRo0u7wXsHRm6d7ZQ7SErkFKNsZK_kFKOkTMYYI3J3RCBev7fgpJ8e01BbBzrIerD_wz-Xq3rU</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Sugiyama, Yuusuke</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201805</creationdate><title>Singularity formation for the 1D compressible Euler equations with variable damping coefficient</title><author>Sugiyama, Yuusuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-25fbdeb9fa3785a2710ada31a9693ecdea1320362b8462f62ba9509f5344cc5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Blow-up</topic><topic>Cauchy problems</topic><topic>Compressibility</topic><topic>Damping</topic><topic>Decay rate</topic><topic>Euler-Lagrange equation</topic><topic>Eulers equations</topic><topic>Lifespan</topic><topic>Mathematical analysis</topic><topic>Mathematical problems</topic><topic>p-system</topic><topic>Singularity formation</topic><topic>Spacetime</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sugiyama, Yuusuke</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sugiyama, Yuusuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Singularity formation for the 1D compressible Euler equations with variable damping coefficient</atitle><jtitle>Nonlinear analysis</jtitle><date>2018-05</date><risdate>2018</risdate><volume>170</volume><spage>70</spage><epage>87</epage><pages>70-87</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><abstract>In this paper, we consider some blow-up problems for the 1D Euler equations with time and space dependent damping. We investigate sufficient conditions on initial data and the rate of spatial or time-like decay of the coefficient of damping for the occurrence of the finite time blow-up. In particular, our sufficient conditions ensure that the derivative blow-up occurs in finite time with the solution itself and the pressure bounded. Our method is based on simple estimates with Riemann invariant. Furthermore, we give sharp lower and upper estimates of the lifespan of solutions, when initial data are small perturbations of constant states.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2017.12.013</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0362-546X |
ispartof | Nonlinear analysis, 2018-05, Vol.170, p.70-87 |
issn | 0362-546X 1873-5215 |
language | eng |
recordid | cdi_proquest_journals_2063753306 |
source | Elsevier ScienceDirect Journals |
subjects | Blow-up Cauchy problems Compressibility Damping Decay rate Euler-Lagrange equation Eulers equations Lifespan Mathematical analysis Mathematical problems p-system Singularity formation Spacetime Time dependence |
title | Singularity formation for the 1D compressible Euler equations with variable damping coefficient |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A41%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Singularity%20formation%20for%20the%201D%20compressible%20Euler%20equations%20with%20variable%20damping%20coefficient&rft.jtitle=Nonlinear%20analysis&rft.au=Sugiyama,%20Yuusuke&rft.date=2018-05&rft.volume=170&rft.spage=70&rft.epage=87&rft.pages=70-87&rft.issn=0362-546X&rft.eissn=1873-5215&rft_id=info:doi/10.1016/j.na.2017.12.013&rft_dat=%3Cproquest_cross%3E2063753306%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2063753306&rft_id=info:pmid/&rft_els_id=S0362546X17303139&rfr_iscdi=true |