Singularity formation for the 1D compressible Euler equations with variable damping coefficient

In this paper, we consider some blow-up problems for the 1D Euler equations with time and space dependent damping. We investigate sufficient conditions on initial data and the rate of spatial or time-like decay of the coefficient of damping for the occurrence of the finite time blow-up. In particula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2018-05, Vol.170, p.70-87
1. Verfasser: Sugiyama, Yuusuke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 87
container_issue
container_start_page 70
container_title Nonlinear analysis
container_volume 170
creator Sugiyama, Yuusuke
description In this paper, we consider some blow-up problems for the 1D Euler equations with time and space dependent damping. We investigate sufficient conditions on initial data and the rate of spatial or time-like decay of the coefficient of damping for the occurrence of the finite time blow-up. In particular, our sufficient conditions ensure that the derivative blow-up occurs in finite time with the solution itself and the pressure bounded. Our method is based on simple estimates with Riemann invariant. Furthermore, we give sharp lower and upper estimates of the lifespan of solutions, when initial data are small perturbations of constant states.
doi_str_mv 10.1016/j.na.2017.12.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2063753306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X17303139</els_id><sourcerecordid>2063753306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-25fbdeb9fa3785a2710ada31a9693ecdea1320362b8462f62ba9509f5344cc5f3</originalsourceid><addsrcrecordid>eNp1kElPwzAQhS0EEqVw52iJc4KXOGm4oVIWqRIHQOJmOc6YOsrS2k5R_z0O5crpjTTvm-UhdE1JSgnNb5u0VykjtEgpSwnlJ2hGFwVPBKPiFM0Iz1kisvzzHF143xASnTyfIflm-6-xVc6GAzaD61SwQz9VOGwA0wesh27rwHtbtYBXYwsOw278tXn8bcMG7yOtpm6tum0cFxEwxmoLfbhEZ0a1Hq7-dI4-Hlfvy-dk_fr0srxfJ5ozFhImTFVDVRrFi4VQrKBE1YpTVeYlB12DopxNP1SLLGcmqioFKY3gWaa1MHyObo5zt27YjeCDbIbR9XGlZCTnheA8yhyRo0u7wXsHRm6d7ZQ7SErkFKNsZK_kFKOkTMYYI3J3RCBev7fgpJ8e01BbBzrIerD_wz-Xq3rU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2063753306</pqid></control><display><type>article</type><title>Singularity formation for the 1D compressible Euler equations with variable damping coefficient</title><source>Elsevier ScienceDirect Journals</source><creator>Sugiyama, Yuusuke</creator><creatorcontrib>Sugiyama, Yuusuke</creatorcontrib><description>In this paper, we consider some blow-up problems for the 1D Euler equations with time and space dependent damping. We investigate sufficient conditions on initial data and the rate of spatial or time-like decay of the coefficient of damping for the occurrence of the finite time blow-up. In particular, our sufficient conditions ensure that the derivative blow-up occurs in finite time with the solution itself and the pressure bounded. Our method is based on simple estimates with Riemann invariant. Furthermore, we give sharp lower and upper estimates of the lifespan of solutions, when initial data are small perturbations of constant states.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2017.12.013</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Blow-up ; Cauchy problems ; Compressibility ; Damping ; Decay rate ; Euler-Lagrange equation ; Eulers equations ; Lifespan ; Mathematical analysis ; Mathematical problems ; p-system ; Singularity formation ; Spacetime ; Time dependence</subject><ispartof>Nonlinear analysis, 2018-05, Vol.170, p.70-87</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-25fbdeb9fa3785a2710ada31a9693ecdea1320362b8462f62ba9509f5344cc5f3</citedby><cites>FETCH-LOGICAL-c322t-25fbdeb9fa3785a2710ada31a9693ecdea1320362b8462f62ba9509f5344cc5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X17303139$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Sugiyama, Yuusuke</creatorcontrib><title>Singularity formation for the 1D compressible Euler equations with variable damping coefficient</title><title>Nonlinear analysis</title><description>In this paper, we consider some blow-up problems for the 1D Euler equations with time and space dependent damping. We investigate sufficient conditions on initial data and the rate of spatial or time-like decay of the coefficient of damping for the occurrence of the finite time blow-up. In particular, our sufficient conditions ensure that the derivative blow-up occurs in finite time with the solution itself and the pressure bounded. Our method is based on simple estimates with Riemann invariant. Furthermore, we give sharp lower and upper estimates of the lifespan of solutions, when initial data are small perturbations of constant states.</description><subject>Blow-up</subject><subject>Cauchy problems</subject><subject>Compressibility</subject><subject>Damping</subject><subject>Decay rate</subject><subject>Euler-Lagrange equation</subject><subject>Eulers equations</subject><subject>Lifespan</subject><subject>Mathematical analysis</subject><subject>Mathematical problems</subject><subject>p-system</subject><subject>Singularity formation</subject><subject>Spacetime</subject><subject>Time dependence</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kElPwzAQhS0EEqVw52iJc4KXOGm4oVIWqRIHQOJmOc6YOsrS2k5R_z0O5crpjTTvm-UhdE1JSgnNb5u0VykjtEgpSwnlJ2hGFwVPBKPiFM0Iz1kisvzzHF143xASnTyfIflm-6-xVc6GAzaD61SwQz9VOGwA0wesh27rwHtbtYBXYwsOw278tXn8bcMG7yOtpm6tum0cFxEwxmoLfbhEZ0a1Hq7-dI4-Hlfvy-dk_fr0srxfJ5ozFhImTFVDVRrFi4VQrKBE1YpTVeYlB12DopxNP1SLLGcmqioFKY3gWaa1MHyObo5zt27YjeCDbIbR9XGlZCTnheA8yhyRo0u7wXsHRm6d7ZQ7SErkFKNsZK_kFKOkTMYYI3J3RCBev7fgpJ8e01BbBzrIerD_wz-Xq3rU</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Sugiyama, Yuusuke</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201805</creationdate><title>Singularity formation for the 1D compressible Euler equations with variable damping coefficient</title><author>Sugiyama, Yuusuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-25fbdeb9fa3785a2710ada31a9693ecdea1320362b8462f62ba9509f5344cc5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Blow-up</topic><topic>Cauchy problems</topic><topic>Compressibility</topic><topic>Damping</topic><topic>Decay rate</topic><topic>Euler-Lagrange equation</topic><topic>Eulers equations</topic><topic>Lifespan</topic><topic>Mathematical analysis</topic><topic>Mathematical problems</topic><topic>p-system</topic><topic>Singularity formation</topic><topic>Spacetime</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sugiyama, Yuusuke</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sugiyama, Yuusuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Singularity formation for the 1D compressible Euler equations with variable damping coefficient</atitle><jtitle>Nonlinear analysis</jtitle><date>2018-05</date><risdate>2018</risdate><volume>170</volume><spage>70</spage><epage>87</epage><pages>70-87</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><abstract>In this paper, we consider some blow-up problems for the 1D Euler equations with time and space dependent damping. We investigate sufficient conditions on initial data and the rate of spatial or time-like decay of the coefficient of damping for the occurrence of the finite time blow-up. In particular, our sufficient conditions ensure that the derivative blow-up occurs in finite time with the solution itself and the pressure bounded. Our method is based on simple estimates with Riemann invariant. Furthermore, we give sharp lower and upper estimates of the lifespan of solutions, when initial data are small perturbations of constant states.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2017.12.013</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2018-05, Vol.170, p.70-87
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_journals_2063753306
source Elsevier ScienceDirect Journals
subjects Blow-up
Cauchy problems
Compressibility
Damping
Decay rate
Euler-Lagrange equation
Eulers equations
Lifespan
Mathematical analysis
Mathematical problems
p-system
Singularity formation
Spacetime
Time dependence
title Singularity formation for the 1D compressible Euler equations with variable damping coefficient
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A41%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Singularity%20formation%20for%20the%201D%20compressible%20Euler%20equations%20with%20variable%20damping%20coefficient&rft.jtitle=Nonlinear%20analysis&rft.au=Sugiyama,%20Yuusuke&rft.date=2018-05&rft.volume=170&rft.spage=70&rft.epage=87&rft.pages=70-87&rft.issn=0362-546X&rft.eissn=1873-5215&rft_id=info:doi/10.1016/j.na.2017.12.013&rft_dat=%3Cproquest_cross%3E2063753306%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2063753306&rft_id=info:pmid/&rft_els_id=S0362546X17303139&rfr_iscdi=true