Configuration-Space-Faddeev Born Approximations

Alternative definitions of the Born approximation and the distorted-wave Born approximation within the framework of the configuration-space Faddeev equations are explored. The most natural definition does not correspond to the Born approximation derived from the Schrodinger equation, even though the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Few-body systems 2003-12, Vol.33 (4), p.233-240
Hauptverfasser: Friar, J. L., Payne, G. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 240
container_issue 4
container_start_page 233
container_title Few-body systems
container_volume 33
creator Friar, J. L.
Payne, G. L.
description Alternative definitions of the Born approximation and the distorted-wave Born approximation within the framework of the configuration-space Faddeev equations are explored. The most natural definition does not correspond to the Born approximation derived from the Schrodinger equation, even though the exact T-matrices for both formalisms are equivalent. The Schrodinger form is optimal, although it is shown that the differences are numerically unimportant. The DWBA corresponding to the Faddeev equations is not channel symmetric, although numerically this is unimportant for the p-d (Coulomb) case. The place in the partial-wave series beyond which the Born approximation can be effectively substituted for the exact result is briefly investigated for p-d and n-d scattering below breakup threshold. [PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s00601-003-0016-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_206375170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>682399081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-a69a240bb1fc8f2151a38e54d51d372458edb47ea13721d2ab5f5c5e96c17cf03</originalsourceid><addsrcrecordid>eNotkMFKxDAQhoMoWFcfwNviPe5M0yTtcS3uKix4UM8hTRPpok1NWtG3N7UehmHg4_-Hj5BrhFsEkJsIIAApAEuDgsIJybBgOeUF4inJAKWkshLsnFzEeEwMrxAysql977q3Keix8z19HrSxdKfb1tqv9Z0P_Xo7DMF_dx9_QLwkZ06_R3v1v1fkdXf_Uj_Qw9P-sd4eqGHAR6pFpfMCmgadKV2OHDUrLS9aji2TecFL2zaFtBrThW2uG-644bYSBqVxwFbkZslN5Z-TjaM6-in0qVLlIJjkKGcIF8gEH2OwTg0hPRp-FIKatahFi0pa1KxFAfsF4SNUJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>206375170</pqid></control><display><type>article</type><title>Configuration-Space-Faddeev Born Approximations</title><source>SpringerNature Journals</source><creator>Friar, J. L. ; Payne, G. L.</creator><creatorcontrib>Friar, J. L. ; Payne, G. L.</creatorcontrib><description>Alternative definitions of the Born approximation and the distorted-wave Born approximation within the framework of the configuration-space Faddeev equations are explored. The most natural definition does not correspond to the Born approximation derived from the Schrodinger equation, even though the exact T-matrices for both formalisms are equivalent. The Schrodinger form is optimal, although it is shown that the differences are numerically unimportant. The DWBA corresponding to the Faddeev equations is not channel symmetric, although numerically this is unimportant for the p-d (Coulomb) case. The place in the partial-wave series beyond which the Born approximation can be effectively substituted for the exact result is briefly investigated for p-d and n-d scattering below breakup threshold. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0177-7963</identifier><identifier>EISSN: 1432-5411</identifier><identifier>DOI: 10.1007/s00601-003-0016-0</identifier><identifier>CODEN: FBSYEQ</identifier><language>eng</language><publisher>Wien: Springer Nature B.V</publisher><subject>Scatter diagrams ; Systems analysis</subject><ispartof>Few-body systems, 2003-12, Vol.33 (4), p.233-240</ispartof><rights>Copyright Springer-Verlag 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-a69a240bb1fc8f2151a38e54d51d372458edb47ea13721d2ab5f5c5e96c17cf03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Friar, J. L.</creatorcontrib><creatorcontrib>Payne, G. L.</creatorcontrib><title>Configuration-Space-Faddeev Born Approximations</title><title>Few-body systems</title><description>Alternative definitions of the Born approximation and the distorted-wave Born approximation within the framework of the configuration-space Faddeev equations are explored. The most natural definition does not correspond to the Born approximation derived from the Schrodinger equation, even though the exact T-matrices for both formalisms are equivalent. The Schrodinger form is optimal, although it is shown that the differences are numerically unimportant. The DWBA corresponding to the Faddeev equations is not channel symmetric, although numerically this is unimportant for the p-d (Coulomb) case. The place in the partial-wave series beyond which the Born approximation can be effectively substituted for the exact result is briefly investigated for p-d and n-d scattering below breakup threshold. [PUBLICATION ABSTRACT]</description><subject>Scatter diagrams</subject><subject>Systems analysis</subject><issn>0177-7963</issn><issn>1432-5411</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotkMFKxDAQhoMoWFcfwNviPe5M0yTtcS3uKix4UM8hTRPpok1NWtG3N7UehmHg4_-Hj5BrhFsEkJsIIAApAEuDgsIJybBgOeUF4inJAKWkshLsnFzEeEwMrxAysql977q3Keix8z19HrSxdKfb1tqv9Z0P_Xo7DMF_dx9_QLwkZ06_R3v1v1fkdXf_Uj_Qw9P-sd4eqGHAR6pFpfMCmgadKV2OHDUrLS9aji2TecFL2zaFtBrThW2uG-644bYSBqVxwFbkZslN5Z-TjaM6-in0qVLlIJjkKGcIF8gEH2OwTg0hPRp-FIKatahFi0pa1KxFAfsF4SNUJw</recordid><startdate>20031201</startdate><enddate>20031201</enddate><creator>Friar, J. L.</creator><creator>Payne, G. L.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20031201</creationdate><title>Configuration-Space-Faddeev Born Approximations</title><author>Friar, J. L. ; Payne, G. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-a69a240bb1fc8f2151a38e54d51d372458edb47ea13721d2ab5f5c5e96c17cf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Scatter diagrams</topic><topic>Systems analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Friar, J. L.</creatorcontrib><creatorcontrib>Payne, G. L.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Few-body systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Friar, J. L.</au><au>Payne, G. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Configuration-Space-Faddeev Born Approximations</atitle><jtitle>Few-body systems</jtitle><date>2003-12-01</date><risdate>2003</risdate><volume>33</volume><issue>4</issue><spage>233</spage><epage>240</epage><pages>233-240</pages><issn>0177-7963</issn><eissn>1432-5411</eissn><coden>FBSYEQ</coden><abstract>Alternative definitions of the Born approximation and the distorted-wave Born approximation within the framework of the configuration-space Faddeev equations are explored. The most natural definition does not correspond to the Born approximation derived from the Schrodinger equation, even though the exact T-matrices for both formalisms are equivalent. The Schrodinger form is optimal, although it is shown that the differences are numerically unimportant. The DWBA corresponding to the Faddeev equations is not channel symmetric, although numerically this is unimportant for the p-d (Coulomb) case. The place in the partial-wave series beyond which the Born approximation can be effectively substituted for the exact result is briefly investigated for p-d and n-d scattering below breakup threshold. [PUBLICATION ABSTRACT]</abstract><cop>Wien</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00601-003-0016-0</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0177-7963
ispartof Few-body systems, 2003-12, Vol.33 (4), p.233-240
issn 0177-7963
1432-5411
language eng
recordid cdi_proquest_journals_206375170
source SpringerNature Journals
subjects Scatter diagrams
Systems analysis
title Configuration-Space-Faddeev Born Approximations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A45%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Configuration-Space-Faddeev%20Born%20Approximations&rft.jtitle=Few-body%20systems&rft.au=Friar,%20J.%20L.&rft.date=2003-12-01&rft.volume=33&rft.issue=4&rft.spage=233&rft.epage=240&rft.pages=233-240&rft.issn=0177-7963&rft.eissn=1432-5411&rft.coden=FBSYEQ&rft_id=info:doi/10.1007/s00601-003-0016-0&rft_dat=%3Cproquest_cross%3E682399081%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=206375170&rft_id=info:pmid/&rfr_iscdi=true