Blow-up for semilinear damped wave equations with subcritical exponent in the scattering case

It is well-known that the critical exponent for semilinear damped wave equations is Fujita exponent when the damping is effective. Lai, Takamura and Wakasa in 2017 have obtained a blow-up result not only for super-Fujita exponent but also for the one closely related to Strauss exponent when the damp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2018-03, Vol.168, p.222-237
Hauptverfasser: Lai, Ning-An, Takamura, Hiroyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 237
container_issue
container_start_page 222
container_title Nonlinear analysis
container_volume 168
creator Lai, Ning-An
Takamura, Hiroyuki
description It is well-known that the critical exponent for semilinear damped wave equations is Fujita exponent when the damping is effective. Lai, Takamura and Wakasa in 2017 have obtained a blow-up result not only for super-Fujita exponent but also for the one closely related to Strauss exponent when the damping is scaling invariant and its constant is relatively small, which has been recently extended by Ikeda and Sobajima. Introducing a multiplier for the time-derivative of the spatial integral of unknown functions, we succeed in employing the techniques on the analysis for semilinear wave equations and proving a blow-up result for semilinear damped wave equations with sub-Strauss exponent when the damping is in the scattering range.
doi_str_mv 10.1016/j.na.2017.12.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2063746835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X17303085</els_id><sourcerecordid>2063746835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-3e679c4130e07ae7cab95638cb291b0c9f40fe2bad7ada5bc01e686b370efd063</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqWwM1piTjjbiZOyQcWXVIkFJBZkOc6FOkqd1HZa-PcElZXphnue904vIZcMUgZMXrep0ykHVqSMpwDlEZmxshBJzll-TGYgJE_yTL6fkrMQWoCJFHJGPu66fp-MA216TwNubGcdak9rvRmwpnu9Q4rbUUfbu0D3Nq5pGCvjbbRGdxS_ht6hi9Q6GtdIg9Exorfukxod8JycNLoLePE35-Tt4f51-ZSsXh6fl7erxAjOYyJQFguTMQEIhcbC6GqRS1Gaii9YBWbRZNAgr3Rd6FrnlQGGspSVKACbGqSYk6tD7uD77YghqrYfvZtOKj6ti0yWIp8oOFDG9yF4bNTg7Ub7b8VA_ZaoWuW0-i1RMa6mEifl5qDg9P3OolfBWHQGa-vRRFX39n_5B7jjeqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2063746835</pqid></control><display><type>article</type><title>Blow-up for semilinear damped wave equations with subcritical exponent in the scattering case</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Lai, Ning-An ; Takamura, Hiroyuki</creator><creatorcontrib>Lai, Ning-An ; Takamura, Hiroyuki</creatorcontrib><description>It is well-known that the critical exponent for semilinear damped wave equations is Fujita exponent when the damping is effective. Lai, Takamura and Wakasa in 2017 have obtained a blow-up result not only for super-Fujita exponent but also for the one closely related to Strauss exponent when the damping is scaling invariant and its constant is relatively small, which has been recently extended by Ikeda and Sobajima. Introducing a multiplier for the time-derivative of the spatial integral of unknown functions, we succeed in employing the techniques on the analysis for semilinear wave equations and proving a blow-up result for semilinear damped wave equations with sub-Strauss exponent when the damping is in the scattering range.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2017.12.008</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Blow-up ; Damped wave equation ; Damping ; Derivatives ; Integrals ; Lifespan ; Mathematical analysis ; Scattering ; Semilinear ; Studies ; Wave equations</subject><ispartof>Nonlinear analysis, 2018-03, Vol.168, p.222-237</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-3e679c4130e07ae7cab95638cb291b0c9f40fe2bad7ada5bc01e686b370efd063</citedby><cites>FETCH-LOGICAL-c322t-3e679c4130e07ae7cab95638cb291b0c9f40fe2bad7ada5bc01e686b370efd063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.na.2017.12.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Lai, Ning-An</creatorcontrib><creatorcontrib>Takamura, Hiroyuki</creatorcontrib><title>Blow-up for semilinear damped wave equations with subcritical exponent in the scattering case</title><title>Nonlinear analysis</title><description>It is well-known that the critical exponent for semilinear damped wave equations is Fujita exponent when the damping is effective. Lai, Takamura and Wakasa in 2017 have obtained a blow-up result not only for super-Fujita exponent but also for the one closely related to Strauss exponent when the damping is scaling invariant and its constant is relatively small, which has been recently extended by Ikeda and Sobajima. Introducing a multiplier for the time-derivative of the spatial integral of unknown functions, we succeed in employing the techniques on the analysis for semilinear wave equations and proving a blow-up result for semilinear damped wave equations with sub-Strauss exponent when the damping is in the scattering range.</description><subject>Blow-up</subject><subject>Damped wave equation</subject><subject>Damping</subject><subject>Derivatives</subject><subject>Integrals</subject><subject>Lifespan</subject><subject>Mathematical analysis</subject><subject>Scattering</subject><subject>Semilinear</subject><subject>Studies</subject><subject>Wave equations</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqWwM1piTjjbiZOyQcWXVIkFJBZkOc6FOkqd1HZa-PcElZXphnue904vIZcMUgZMXrep0ykHVqSMpwDlEZmxshBJzll-TGYgJE_yTL6fkrMQWoCJFHJGPu66fp-MA216TwNubGcdak9rvRmwpnu9Q4rbUUfbu0D3Nq5pGCvjbbRGdxS_ht6hi9Q6GtdIg9Exorfukxod8JycNLoLePE35-Tt4f51-ZSsXh6fl7erxAjOYyJQFguTMQEIhcbC6GqRS1Gaii9YBWbRZNAgr3Rd6FrnlQGGspSVKACbGqSYk6tD7uD77YghqrYfvZtOKj6ti0yWIp8oOFDG9yF4bNTg7Ub7b8VA_ZaoWuW0-i1RMa6mEifl5qDg9P3OolfBWHQGa-vRRFX39n_5B7jjeqQ</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Lai, Ning-An</creator><creator>Takamura, Hiroyuki</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201803</creationdate><title>Blow-up for semilinear damped wave equations with subcritical exponent in the scattering case</title><author>Lai, Ning-An ; Takamura, Hiroyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-3e679c4130e07ae7cab95638cb291b0c9f40fe2bad7ada5bc01e686b370efd063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Blow-up</topic><topic>Damped wave equation</topic><topic>Damping</topic><topic>Derivatives</topic><topic>Integrals</topic><topic>Lifespan</topic><topic>Mathematical analysis</topic><topic>Scattering</topic><topic>Semilinear</topic><topic>Studies</topic><topic>Wave equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lai, Ning-An</creatorcontrib><creatorcontrib>Takamura, Hiroyuki</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lai, Ning-An</au><au>Takamura, Hiroyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blow-up for semilinear damped wave equations with subcritical exponent in the scattering case</atitle><jtitle>Nonlinear analysis</jtitle><date>2018-03</date><risdate>2018</risdate><volume>168</volume><spage>222</spage><epage>237</epage><pages>222-237</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><abstract>It is well-known that the critical exponent for semilinear damped wave equations is Fujita exponent when the damping is effective. Lai, Takamura and Wakasa in 2017 have obtained a blow-up result not only for super-Fujita exponent but also for the one closely related to Strauss exponent when the damping is scaling invariant and its constant is relatively small, which has been recently extended by Ikeda and Sobajima. Introducing a multiplier for the time-derivative of the spatial integral of unknown functions, we succeed in employing the techniques on the analysis for semilinear wave equations and proving a blow-up result for semilinear damped wave equations with sub-Strauss exponent when the damping is in the scattering range.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2017.12.008</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2018-03, Vol.168, p.222-237
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_journals_2063746835
source ScienceDirect Journals (5 years ago - present)
subjects Blow-up
Damped wave equation
Damping
Derivatives
Integrals
Lifespan
Mathematical analysis
Scattering
Semilinear
Studies
Wave equations
title Blow-up for semilinear damped wave equations with subcritical exponent in the scattering case
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A51%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blow-up%20for%20semilinear%20damped%20wave%20equations%20with%20subcritical%20exponent%20in%20the%20scattering%20case&rft.jtitle=Nonlinear%20analysis&rft.au=Lai,%20Ning-An&rft.date=2018-03&rft.volume=168&rft.spage=222&rft.epage=237&rft.pages=222-237&rft.issn=0362-546X&rft.eissn=1873-5215&rft_id=info:doi/10.1016/j.na.2017.12.008&rft_dat=%3Cproquest_cross%3E2063746835%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2063746835&rft_id=info:pmid/&rft_els_id=S0362546X17303085&rfr_iscdi=true