Towards predicting the piezoelectricity and physiochemical properties of the electrospun P(VDF-TrFE) nanogenrators using an artificial neural network

Electrospun P(VDF-TrFE) nanogenrators with a wide range of piezoelectricity performance and physiochemical properties is fabricated through modification of the processing parameters such as polymer concentration, applied voltage, feed rate and electrospinning time/fibres mat thickness. In order to e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer testing 2018-04, Vol.66, p.178-188
Hauptverfasser: Abolhasani, Mohammad Mahdi, Shirvanimoghaddam, Kamyar, Khayyam, Hamid, Moosavi, Seyed Masoud, Zohdi, Nima, Naebe, Minoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 188
container_issue
container_start_page 178
container_title Polymer testing
container_volume 66
creator Abolhasani, Mohammad Mahdi
Shirvanimoghaddam, Kamyar
Khayyam, Hamid
Moosavi, Seyed Masoud
Zohdi, Nima
Naebe, Minoo
description Electrospun P(VDF-TrFE) nanogenrators with a wide range of piezoelectricity performance and physiochemical properties is fabricated through modification of the processing parameters such as polymer concentration, applied voltage, feed rate and electrospinning time/fibres mat thickness. In order to estimate and predict the relationships of the process parameters with the piezoelectricity performance and fibres morphology, an Artificial Neural Networks (ANN) model is developed. Results of the developed ANN model is found to be in a good agreement with experimental results with less than 5% error and shows the good potential to model physiochemical properties of the nanogenrators to predict untested conditions. •Fabrication of P(VDF-TrFE)nanofiber composite by electrospinning method with wide range of morphological and piezolectrical performance.•Considering all the processing parameters effecting on final properties of the fibres.•Successfully developing a MIMO neural network modelling for the prediction of physical and chemical properties of P(VDF-TrFE) nanofiber composite.•Validating the appropriate models by real data and revealing a specific pattern for interrelationship between crystalline structure and electrical output of nanofibers to electrospinning conditions.•Feasibility of applying the proposed model for untested conditions.
doi_str_mv 10.1016/j.polymertesting.2018.01.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2063746607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142941817311546</els_id><sourcerecordid>2063746607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-fcc715e537676cefdaefcba96676141658fdc268c696ad995be362d84c8f1b7b3</originalsourceid><addsrcrecordid>eNqNUU1LAzEUDKJgrf6HgB70sDXZj-wueBG1Kgh6qF5Dmn1pU9tkTXaV-j_8v75aL96EB48Hb2aYGUJOOBtxxsX5YtT65XoFoYPYWTcbpYxXI8Zx2A4Z8KrMkjTLq10yYDxPkzrn1T45iHHBGCuQYUC-Jv5DhSbSNkBj9YaFdnOgrYVPD0vQXbDadmuqXEPb-Tpar-ewslotEeJb1LYQqTc_qC3Ax7Z39On05XqcTML45ow65fwMXFCdD5H2caOiHFUINkiPXA768LO6Dx9eD8meUcsIR797SJ7HN5Oru-Th8fb-6vIh0TlPu8RoXfICiqwUpdBgGgVGT1Ut8OQ5F0VlGp2KSotaqKauiylkIm2qXFeGT8tpNiTHW1608tZjiHLh--BQUqZMZGUuBCvx62L7pdFaDGBkG-xKhbXkTG6KkAv5twi5KUIyjsMQPt7CAZ28WwgyagtOY94B45KNt_8j-gZraZ-G</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2063746607</pqid></control><display><type>article</type><title>Towards predicting the piezoelectricity and physiochemical properties of the electrospun P(VDF-TrFE) nanogenrators using an artificial neural network</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><creator>Abolhasani, Mohammad Mahdi ; Shirvanimoghaddam, Kamyar ; Khayyam, Hamid ; Moosavi, Seyed Masoud ; Zohdi, Nima ; Naebe, Minoo</creator><creatorcontrib>Abolhasani, Mohammad Mahdi ; Shirvanimoghaddam, Kamyar ; Khayyam, Hamid ; Moosavi, Seyed Masoud ; Zohdi, Nima ; Naebe, Minoo</creatorcontrib><description>Electrospun P(VDF-TrFE) nanogenrators with a wide range of piezoelectricity performance and physiochemical properties is fabricated through modification of the processing parameters such as polymer concentration, applied voltage, feed rate and electrospinning time/fibres mat thickness. In order to estimate and predict the relationships of the process parameters with the piezoelectricity performance and fibres morphology, an Artificial Neural Networks (ANN) model is developed. Results of the developed ANN model is found to be in a good agreement with experimental results with less than 5% error and shows the good potential to model physiochemical properties of the nanogenrators to predict untested conditions. •Fabrication of P(VDF-TrFE)nanofiber composite by electrospinning method with wide range of morphological and piezolectrical performance.•Considering all the processing parameters effecting on final properties of the fibres.•Successfully developing a MIMO neural network modelling for the prediction of physical and chemical properties of P(VDF-TrFE) nanofiber composite.•Validating the appropriate models by real data and revealing a specific pattern for interrelationship between crystalline structure and electrical output of nanofibers to electrospinning conditions.•Feasibility of applying the proposed model for untested conditions.</description><identifier>ISSN: 0142-9418</identifier><identifier>EISSN: 1873-2348</identifier><identifier>DOI: 10.1016/j.polymertesting.2018.01.010</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>Artificial neural network ; Artificial neural networks ; Electric properties ; Electrospinning ; Feed rate ; Generators ; Mathematical models ; Morphology ; Nanofibre ; Nanogenerator ; Neural networks ; Parameter modification ; Physiochemistry ; Piezoelectricity ; Polymers ; Process parameters ; Properties (attributes)</subject><ispartof>Polymer testing, 2018-04, Vol.66, p.178-188</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-fcc715e537676cefdaefcba96676141658fdc268c696ad995be362d84c8f1b7b3</citedby><cites>FETCH-LOGICAL-c412t-fcc715e537676cefdaefcba96676141658fdc268c696ad995be362d84c8f1b7b3</cites><orcidid>0000-0002-4471-1889</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.polymertesting.2018.01.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,45999</link.rule.ids></links><search><creatorcontrib>Abolhasani, Mohammad Mahdi</creatorcontrib><creatorcontrib>Shirvanimoghaddam, Kamyar</creatorcontrib><creatorcontrib>Khayyam, Hamid</creatorcontrib><creatorcontrib>Moosavi, Seyed Masoud</creatorcontrib><creatorcontrib>Zohdi, Nima</creatorcontrib><creatorcontrib>Naebe, Minoo</creatorcontrib><title>Towards predicting the piezoelectricity and physiochemical properties of the electrospun P(VDF-TrFE) nanogenrators using an artificial neural network</title><title>Polymer testing</title><description>Electrospun P(VDF-TrFE) nanogenrators with a wide range of piezoelectricity performance and physiochemical properties is fabricated through modification of the processing parameters such as polymer concentration, applied voltage, feed rate and electrospinning time/fibres mat thickness. In order to estimate and predict the relationships of the process parameters with the piezoelectricity performance and fibres morphology, an Artificial Neural Networks (ANN) model is developed. Results of the developed ANN model is found to be in a good agreement with experimental results with less than 5% error and shows the good potential to model physiochemical properties of the nanogenrators to predict untested conditions. •Fabrication of P(VDF-TrFE)nanofiber composite by electrospinning method with wide range of morphological and piezolectrical performance.•Considering all the processing parameters effecting on final properties of the fibres.•Successfully developing a MIMO neural network modelling for the prediction of physical and chemical properties of P(VDF-TrFE) nanofiber composite.•Validating the appropriate models by real data and revealing a specific pattern for interrelationship between crystalline structure and electrical output of nanofibers to electrospinning conditions.•Feasibility of applying the proposed model for untested conditions.</description><subject>Artificial neural network</subject><subject>Artificial neural networks</subject><subject>Electric properties</subject><subject>Electrospinning</subject><subject>Feed rate</subject><subject>Generators</subject><subject>Mathematical models</subject><subject>Morphology</subject><subject>Nanofibre</subject><subject>Nanogenerator</subject><subject>Neural networks</subject><subject>Parameter modification</subject><subject>Physiochemistry</subject><subject>Piezoelectricity</subject><subject>Polymers</subject><subject>Process parameters</subject><subject>Properties (attributes)</subject><issn>0142-9418</issn><issn>1873-2348</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNUU1LAzEUDKJgrf6HgB70sDXZj-wueBG1Kgh6qF5Dmn1pU9tkTXaV-j_8v75aL96EB48Hb2aYGUJOOBtxxsX5YtT65XoFoYPYWTcbpYxXI8Zx2A4Z8KrMkjTLq10yYDxPkzrn1T45iHHBGCuQYUC-Jv5DhSbSNkBj9YaFdnOgrYVPD0vQXbDadmuqXEPb-Tpar-ewslotEeJb1LYQqTc_qC3Ax7Z39On05XqcTML45ow65fwMXFCdD5H2caOiHFUINkiPXA768LO6Dx9eD8meUcsIR797SJ7HN5Oru-Th8fb-6vIh0TlPu8RoXfICiqwUpdBgGgVGT1Ut8OQ5F0VlGp2KSotaqKauiylkIm2qXFeGT8tpNiTHW1608tZjiHLh--BQUqZMZGUuBCvx62L7pdFaDGBkG-xKhbXkTG6KkAv5twi5KUIyjsMQPt7CAZ28WwgyagtOY94B45KNt_8j-gZraZ-G</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Abolhasani, Mohammad Mahdi</creator><creator>Shirvanimoghaddam, Kamyar</creator><creator>Khayyam, Hamid</creator><creator>Moosavi, Seyed Masoud</creator><creator>Zohdi, Nima</creator><creator>Naebe, Minoo</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-4471-1889</orcidid></search><sort><creationdate>201804</creationdate><title>Towards predicting the piezoelectricity and physiochemical properties of the electrospun P(VDF-TrFE) nanogenrators using an artificial neural network</title><author>Abolhasani, Mohammad Mahdi ; Shirvanimoghaddam, Kamyar ; Khayyam, Hamid ; Moosavi, Seyed Masoud ; Zohdi, Nima ; Naebe, Minoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-fcc715e537676cefdaefcba96676141658fdc268c696ad995be362d84c8f1b7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial neural network</topic><topic>Artificial neural networks</topic><topic>Electric properties</topic><topic>Electrospinning</topic><topic>Feed rate</topic><topic>Generators</topic><topic>Mathematical models</topic><topic>Morphology</topic><topic>Nanofibre</topic><topic>Nanogenerator</topic><topic>Neural networks</topic><topic>Parameter modification</topic><topic>Physiochemistry</topic><topic>Piezoelectricity</topic><topic>Polymers</topic><topic>Process parameters</topic><topic>Properties (attributes)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abolhasani, Mohammad Mahdi</creatorcontrib><creatorcontrib>Shirvanimoghaddam, Kamyar</creatorcontrib><creatorcontrib>Khayyam, Hamid</creatorcontrib><creatorcontrib>Moosavi, Seyed Masoud</creatorcontrib><creatorcontrib>Zohdi, Nima</creatorcontrib><creatorcontrib>Naebe, Minoo</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer testing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abolhasani, Mohammad Mahdi</au><au>Shirvanimoghaddam, Kamyar</au><au>Khayyam, Hamid</au><au>Moosavi, Seyed Masoud</au><au>Zohdi, Nima</au><au>Naebe, Minoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards predicting the piezoelectricity and physiochemical properties of the electrospun P(VDF-TrFE) nanogenrators using an artificial neural network</atitle><jtitle>Polymer testing</jtitle><date>2018-04</date><risdate>2018</risdate><volume>66</volume><spage>178</spage><epage>188</epage><pages>178-188</pages><issn>0142-9418</issn><eissn>1873-2348</eissn><abstract>Electrospun P(VDF-TrFE) nanogenrators with a wide range of piezoelectricity performance and physiochemical properties is fabricated through modification of the processing parameters such as polymer concentration, applied voltage, feed rate and electrospinning time/fibres mat thickness. In order to estimate and predict the relationships of the process parameters with the piezoelectricity performance and fibres morphology, an Artificial Neural Networks (ANN) model is developed. Results of the developed ANN model is found to be in a good agreement with experimental results with less than 5% error and shows the good potential to model physiochemical properties of the nanogenrators to predict untested conditions. •Fabrication of P(VDF-TrFE)nanofiber composite by electrospinning method with wide range of morphological and piezolectrical performance.•Considering all the processing parameters effecting on final properties of the fibres.•Successfully developing a MIMO neural network modelling for the prediction of physical and chemical properties of P(VDF-TrFE) nanofiber composite.•Validating the appropriate models by real data and revealing a specific pattern for interrelationship between crystalline structure and electrical output of nanofibers to electrospinning conditions.•Feasibility of applying the proposed model for untested conditions.</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymertesting.2018.01.010</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4471-1889</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0142-9418
ispartof Polymer testing, 2018-04, Vol.66, p.178-188
issn 0142-9418
1873-2348
language eng
recordid cdi_proquest_journals_2063746607
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier)
subjects Artificial neural network
Artificial neural networks
Electric properties
Electrospinning
Feed rate
Generators
Mathematical models
Morphology
Nanofibre
Nanogenerator
Neural networks
Parameter modification
Physiochemistry
Piezoelectricity
Polymers
Process parameters
Properties (attributes)
title Towards predicting the piezoelectricity and physiochemical properties of the electrospun P(VDF-TrFE) nanogenrators using an artificial neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T21%3A01%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20predicting%20the%20piezoelectricity%20and%20physiochemical%20properties%20of%20the%20electrospun%20P(VDF-TrFE)%20nanogenrators%20using%20an%20artificial%20neural%20network&rft.jtitle=Polymer%20testing&rft.au=Abolhasani,%20Mohammad%20Mahdi&rft.date=2018-04&rft.volume=66&rft.spage=178&rft.epage=188&rft.pages=178-188&rft.issn=0142-9418&rft.eissn=1873-2348&rft_id=info:doi/10.1016/j.polymertesting.2018.01.010&rft_dat=%3Cproquest_cross%3E2063746607%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2063746607&rft_id=info:pmid/&rft_els_id=S0142941817311546&rfr_iscdi=true