Towards predicting the piezoelectricity and physiochemical properties of the electrospun P(VDF-TrFE) nanogenrators using an artificial neural network
Electrospun P(VDF-TrFE) nanogenrators with a wide range of piezoelectricity performance and physiochemical properties is fabricated through modification of the processing parameters such as polymer concentration, applied voltage, feed rate and electrospinning time/fibres mat thickness. In order to e...
Gespeichert in:
Veröffentlicht in: | Polymer testing 2018-04, Vol.66, p.178-188 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 188 |
---|---|
container_issue | |
container_start_page | 178 |
container_title | Polymer testing |
container_volume | 66 |
creator | Abolhasani, Mohammad Mahdi Shirvanimoghaddam, Kamyar Khayyam, Hamid Moosavi, Seyed Masoud Zohdi, Nima Naebe, Minoo |
description | Electrospun P(VDF-TrFE) nanogenrators with a wide range of piezoelectricity performance and physiochemical properties is fabricated through modification of the processing parameters such as polymer concentration, applied voltage, feed rate and electrospinning time/fibres mat thickness. In order to estimate and predict the relationships of the process parameters with the piezoelectricity performance and fibres morphology, an Artificial Neural Networks (ANN) model is developed. Results of the developed ANN model is found to be in a good agreement with experimental results with less than 5% error and shows the good potential to model physiochemical properties of the nanogenrators to predict untested conditions.
•Fabrication of P(VDF-TrFE)nanofiber composite by electrospinning method with wide range of morphological and piezolectrical performance.•Considering all the processing parameters effecting on final properties of the fibres.•Successfully developing a MIMO neural network modelling for the prediction of physical and chemical properties of P(VDF-TrFE) nanofiber composite.•Validating the appropriate models by real data and revealing a specific pattern for interrelationship between crystalline structure and electrical output of nanofibers to electrospinning conditions.•Feasibility of applying the proposed model for untested conditions. |
doi_str_mv | 10.1016/j.polymertesting.2018.01.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2063746607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142941817311546</els_id><sourcerecordid>2063746607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-fcc715e537676cefdaefcba96676141658fdc268c696ad995be362d84c8f1b7b3</originalsourceid><addsrcrecordid>eNqNUU1LAzEUDKJgrf6HgB70sDXZj-wueBG1Kgh6qF5Dmn1pU9tkTXaV-j_8v75aL96EB48Hb2aYGUJOOBtxxsX5YtT65XoFoYPYWTcbpYxXI8Zx2A4Z8KrMkjTLq10yYDxPkzrn1T45iHHBGCuQYUC-Jv5DhSbSNkBj9YaFdnOgrYVPD0vQXbDadmuqXEPb-Tpar-ewslotEeJb1LYQqTc_qC3Ax7Z39On05XqcTML45ow65fwMXFCdD5H2caOiHFUINkiPXA768LO6Dx9eD8meUcsIR797SJ7HN5Oru-Th8fb-6vIh0TlPu8RoXfICiqwUpdBgGgVGT1Ut8OQ5F0VlGp2KSotaqKauiylkIm2qXFeGT8tpNiTHW1608tZjiHLh--BQUqZMZGUuBCvx62L7pdFaDGBkG-xKhbXkTG6KkAv5twi5KUIyjsMQPt7CAZ28WwgyagtOY94B45KNt_8j-gZraZ-G</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2063746607</pqid></control><display><type>article</type><title>Towards predicting the piezoelectricity and physiochemical properties of the electrospun P(VDF-TrFE) nanogenrators using an artificial neural network</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><creator>Abolhasani, Mohammad Mahdi ; Shirvanimoghaddam, Kamyar ; Khayyam, Hamid ; Moosavi, Seyed Masoud ; Zohdi, Nima ; Naebe, Minoo</creator><creatorcontrib>Abolhasani, Mohammad Mahdi ; Shirvanimoghaddam, Kamyar ; Khayyam, Hamid ; Moosavi, Seyed Masoud ; Zohdi, Nima ; Naebe, Minoo</creatorcontrib><description>Electrospun P(VDF-TrFE) nanogenrators with a wide range of piezoelectricity performance and physiochemical properties is fabricated through modification of the processing parameters such as polymer concentration, applied voltage, feed rate and electrospinning time/fibres mat thickness. In order to estimate and predict the relationships of the process parameters with the piezoelectricity performance and fibres morphology, an Artificial Neural Networks (ANN) model is developed. Results of the developed ANN model is found to be in a good agreement with experimental results with less than 5% error and shows the good potential to model physiochemical properties of the nanogenrators to predict untested conditions.
•Fabrication of P(VDF-TrFE)nanofiber composite by electrospinning method with wide range of morphological and piezolectrical performance.•Considering all the processing parameters effecting on final properties of the fibres.•Successfully developing a MIMO neural network modelling for the prediction of physical and chemical properties of P(VDF-TrFE) nanofiber composite.•Validating the appropriate models by real data and revealing a specific pattern for interrelationship between crystalline structure and electrical output of nanofibers to electrospinning conditions.•Feasibility of applying the proposed model for untested conditions.</description><identifier>ISSN: 0142-9418</identifier><identifier>EISSN: 1873-2348</identifier><identifier>DOI: 10.1016/j.polymertesting.2018.01.010</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>Artificial neural network ; Artificial neural networks ; Electric properties ; Electrospinning ; Feed rate ; Generators ; Mathematical models ; Morphology ; Nanofibre ; Nanogenerator ; Neural networks ; Parameter modification ; Physiochemistry ; Piezoelectricity ; Polymers ; Process parameters ; Properties (attributes)</subject><ispartof>Polymer testing, 2018-04, Vol.66, p.178-188</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-fcc715e537676cefdaefcba96676141658fdc268c696ad995be362d84c8f1b7b3</citedby><cites>FETCH-LOGICAL-c412t-fcc715e537676cefdaefcba96676141658fdc268c696ad995be362d84c8f1b7b3</cites><orcidid>0000-0002-4471-1889</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.polymertesting.2018.01.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,45999</link.rule.ids></links><search><creatorcontrib>Abolhasani, Mohammad Mahdi</creatorcontrib><creatorcontrib>Shirvanimoghaddam, Kamyar</creatorcontrib><creatorcontrib>Khayyam, Hamid</creatorcontrib><creatorcontrib>Moosavi, Seyed Masoud</creatorcontrib><creatorcontrib>Zohdi, Nima</creatorcontrib><creatorcontrib>Naebe, Minoo</creatorcontrib><title>Towards predicting the piezoelectricity and physiochemical properties of the electrospun P(VDF-TrFE) nanogenrators using an artificial neural network</title><title>Polymer testing</title><description>Electrospun P(VDF-TrFE) nanogenrators with a wide range of piezoelectricity performance and physiochemical properties is fabricated through modification of the processing parameters such as polymer concentration, applied voltage, feed rate and electrospinning time/fibres mat thickness. In order to estimate and predict the relationships of the process parameters with the piezoelectricity performance and fibres morphology, an Artificial Neural Networks (ANN) model is developed. Results of the developed ANN model is found to be in a good agreement with experimental results with less than 5% error and shows the good potential to model physiochemical properties of the nanogenrators to predict untested conditions.
•Fabrication of P(VDF-TrFE)nanofiber composite by electrospinning method with wide range of morphological and piezolectrical performance.•Considering all the processing parameters effecting on final properties of the fibres.•Successfully developing a MIMO neural network modelling for the prediction of physical and chemical properties of P(VDF-TrFE) nanofiber composite.•Validating the appropriate models by real data and revealing a specific pattern for interrelationship between crystalline structure and electrical output of nanofibers to electrospinning conditions.•Feasibility of applying the proposed model for untested conditions.</description><subject>Artificial neural network</subject><subject>Artificial neural networks</subject><subject>Electric properties</subject><subject>Electrospinning</subject><subject>Feed rate</subject><subject>Generators</subject><subject>Mathematical models</subject><subject>Morphology</subject><subject>Nanofibre</subject><subject>Nanogenerator</subject><subject>Neural networks</subject><subject>Parameter modification</subject><subject>Physiochemistry</subject><subject>Piezoelectricity</subject><subject>Polymers</subject><subject>Process parameters</subject><subject>Properties (attributes)</subject><issn>0142-9418</issn><issn>1873-2348</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNUU1LAzEUDKJgrf6HgB70sDXZj-wueBG1Kgh6qF5Dmn1pU9tkTXaV-j_8v75aL96EB48Hb2aYGUJOOBtxxsX5YtT65XoFoYPYWTcbpYxXI8Zx2A4Z8KrMkjTLq10yYDxPkzrn1T45iHHBGCuQYUC-Jv5DhSbSNkBj9YaFdnOgrYVPD0vQXbDadmuqXEPb-Tpar-ewslotEeJb1LYQqTc_qC3Ax7Z39On05XqcTML45ow65fwMXFCdD5H2caOiHFUINkiPXA768LO6Dx9eD8meUcsIR797SJ7HN5Oru-Th8fb-6vIh0TlPu8RoXfICiqwUpdBgGgVGT1Ut8OQ5F0VlGp2KSotaqKauiylkIm2qXFeGT8tpNiTHW1608tZjiHLh--BQUqZMZGUuBCvx62L7pdFaDGBkG-xKhbXkTG6KkAv5twi5KUIyjsMQPt7CAZ28WwgyagtOY94B45KNt_8j-gZraZ-G</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Abolhasani, Mohammad Mahdi</creator><creator>Shirvanimoghaddam, Kamyar</creator><creator>Khayyam, Hamid</creator><creator>Moosavi, Seyed Masoud</creator><creator>Zohdi, Nima</creator><creator>Naebe, Minoo</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-4471-1889</orcidid></search><sort><creationdate>201804</creationdate><title>Towards predicting the piezoelectricity and physiochemical properties of the electrospun P(VDF-TrFE) nanogenrators using an artificial neural network</title><author>Abolhasani, Mohammad Mahdi ; Shirvanimoghaddam, Kamyar ; Khayyam, Hamid ; Moosavi, Seyed Masoud ; Zohdi, Nima ; Naebe, Minoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-fcc715e537676cefdaefcba96676141658fdc268c696ad995be362d84c8f1b7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial neural network</topic><topic>Artificial neural networks</topic><topic>Electric properties</topic><topic>Electrospinning</topic><topic>Feed rate</topic><topic>Generators</topic><topic>Mathematical models</topic><topic>Morphology</topic><topic>Nanofibre</topic><topic>Nanogenerator</topic><topic>Neural networks</topic><topic>Parameter modification</topic><topic>Physiochemistry</topic><topic>Piezoelectricity</topic><topic>Polymers</topic><topic>Process parameters</topic><topic>Properties (attributes)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abolhasani, Mohammad Mahdi</creatorcontrib><creatorcontrib>Shirvanimoghaddam, Kamyar</creatorcontrib><creatorcontrib>Khayyam, Hamid</creatorcontrib><creatorcontrib>Moosavi, Seyed Masoud</creatorcontrib><creatorcontrib>Zohdi, Nima</creatorcontrib><creatorcontrib>Naebe, Minoo</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer testing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abolhasani, Mohammad Mahdi</au><au>Shirvanimoghaddam, Kamyar</au><au>Khayyam, Hamid</au><au>Moosavi, Seyed Masoud</au><au>Zohdi, Nima</au><au>Naebe, Minoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards predicting the piezoelectricity and physiochemical properties of the electrospun P(VDF-TrFE) nanogenrators using an artificial neural network</atitle><jtitle>Polymer testing</jtitle><date>2018-04</date><risdate>2018</risdate><volume>66</volume><spage>178</spage><epage>188</epage><pages>178-188</pages><issn>0142-9418</issn><eissn>1873-2348</eissn><abstract>Electrospun P(VDF-TrFE) nanogenrators with a wide range of piezoelectricity performance and physiochemical properties is fabricated through modification of the processing parameters such as polymer concentration, applied voltage, feed rate and electrospinning time/fibres mat thickness. In order to estimate and predict the relationships of the process parameters with the piezoelectricity performance and fibres morphology, an Artificial Neural Networks (ANN) model is developed. Results of the developed ANN model is found to be in a good agreement with experimental results with less than 5% error and shows the good potential to model physiochemical properties of the nanogenrators to predict untested conditions.
•Fabrication of P(VDF-TrFE)nanofiber composite by electrospinning method with wide range of morphological and piezolectrical performance.•Considering all the processing parameters effecting on final properties of the fibres.•Successfully developing a MIMO neural network modelling for the prediction of physical and chemical properties of P(VDF-TrFE) nanofiber composite.•Validating the appropriate models by real data and revealing a specific pattern for interrelationship between crystalline structure and electrical output of nanofibers to electrospinning conditions.•Feasibility of applying the proposed model for untested conditions.</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymertesting.2018.01.010</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4471-1889</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9418 |
ispartof | Polymer testing, 2018-04, Vol.66, p.178-188 |
issn | 0142-9418 1873-2348 |
language | eng |
recordid | cdi_proquest_journals_2063746607 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier) |
subjects | Artificial neural network Artificial neural networks Electric properties Electrospinning Feed rate Generators Mathematical models Morphology Nanofibre Nanogenerator Neural networks Parameter modification Physiochemistry Piezoelectricity Polymers Process parameters Properties (attributes) |
title | Towards predicting the piezoelectricity and physiochemical properties of the electrospun P(VDF-TrFE) nanogenrators using an artificial neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T21%3A01%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20predicting%20the%20piezoelectricity%20and%20physiochemical%20properties%20of%20the%20electrospun%20P(VDF-TrFE)%20nanogenrators%20using%20an%20artificial%20neural%20network&rft.jtitle=Polymer%20testing&rft.au=Abolhasani,%20Mohammad%20Mahdi&rft.date=2018-04&rft.volume=66&rft.spage=178&rft.epage=188&rft.pages=178-188&rft.issn=0142-9418&rft.eissn=1873-2348&rft_id=info:doi/10.1016/j.polymertesting.2018.01.010&rft_dat=%3Cproquest_cross%3E2063746607%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2063746607&rft_id=info:pmid/&rft_els_id=S0142941817311546&rfr_iscdi=true |