CFD-MRI: A coupled measurement and simulation approach for accurate fluid flow characterisation and domain identification

•The CFD-MRI method for accurate fluid flow characterisation and domain identification is proposed.•Simulation and measurement data are combined to an optimisation problem.•The method is able to locate an object and accurately characterise the fluid flow using only 2D spatially resolved MRI data.•As...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & fluids 2018-04, Vol.166, p.218-224
Hauptverfasser: Klemens, Fabian, Schuhmann, Sebastian, Guthausen, Gisela, Thäter, Gudrun, Krause, Mathias J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 224
container_issue
container_start_page 218
container_title Computers & fluids
container_volume 166
creator Klemens, Fabian
Schuhmann, Sebastian
Guthausen, Gisela
Thäter, Gudrun
Krause, Mathias J.
description •The CFD-MRI method for accurate fluid flow characterisation and domain identification is proposed.•Simulation and measurement data are combined to an optimisation problem.•The method is able to locate an object and accurately characterise the fluid flow using only 2D spatially resolved MRI data.•As a result, the measurement noise was significantly reduced. This article presents the coupling of magnetic resonance imaging (MRI) measurements and computational fluid dynamics (CFD) for accurate characterisation of fluid flow and identification of flow domains. Currently, MRI measurements are averaged over time and space, assuming a certain smoothness of the velocity and pressure space. However, a possible solution of a fluid problem must fulfil the Navier–Stokes equations, which sets up a condition that is much more restrictive than the usual smoothness assumptions in e.g. curve fitting. The novel CFD-MRI method uses this insight to reduce the statistical noise and to identify finer structures of the underlying domain. The problem is formulated as a distributed control problem which minimises the distance between measured and simulated flow field. Thereby, the simulated flow field is the solution of a parametrised porous media BGK-Boltzmann equation which approaches a homogenised Navier–Stokes equation in the hydrodynamic limit. The parameters represent the porosity distributed in the domain which yields a domain and a fluid flow that fits best to the measured data. This enables the method they locate an obstacle and the flow field from limited 2D spatially resolved MRI data with one velocity component. The problem is solved with an adjoint lattice Boltzmann method (ALBM) using the open source software OpenLB11http://www.openlb.net.
doi_str_mv 10.1016/j.compfluid.2018.02.022
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2063745947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004579301830077X</els_id><sourcerecordid>2063745947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-59d2becff9709628cf658c701dcd1e5c4f96cd082f234184262d33fdaf45981a3</originalsourceid><addsrcrecordid>eNqFUN9LwzAQDqLgnP4NBnxuTdIfaX0b0-lgIog-h3hJWErb1KRV9t-bbeKrcNxx3Pd9d_chdE1JSgktb5sUXDeYdrIqZYRWKWEx2Ama0YrXCeE5P0UzQvIi4XVGztFFCA2JfcbyGdotV_fJ8-v6Di8wuGlotcKdlmHyutP9iGWvcLDd1MrRuh7LYfBOwhYb57EEmLwcNT4sj9l9Y9hKL2HU3oZfRhRQrpO2x1ZFRWssHCaX6MzINuir3zpH76uHt-VTsnl5XC8XmwSymo1JUSv2ocGYmpO6ZBWYsqiAE6pAUV1AbuoSFKmYYVlOq5yVTGWZUdLkRV1Rmc3RzVE3Xv456TCKxk2-jysFI2XGIyznEcWPKPAuBK-NGLztpN8JSsTeZ9GIP5_F3mdBWAwWmYsjU8cnvqz2IoDVPWhlvYZRKGf_1fgBNQOMpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2063745947</pqid></control><display><type>article</type><title>CFD-MRI: A coupled measurement and simulation approach for accurate fluid flow characterisation and domain identification</title><source>Elsevier ScienceDirect Journals</source><creator>Klemens, Fabian ; Schuhmann, Sebastian ; Guthausen, Gisela ; Thäter, Gudrun ; Krause, Mathias J.</creator><creatorcontrib>Klemens, Fabian ; Schuhmann, Sebastian ; Guthausen, Gisela ; Thäter, Gudrun ; Krause, Mathias J.</creatorcontrib><description>•The CFD-MRI method for accurate fluid flow characterisation and domain identification is proposed.•Simulation and measurement data are combined to an optimisation problem.•The method is able to locate an object and accurately characterise the fluid flow using only 2D spatially resolved MRI data.•As a result, the measurement noise was significantly reduced. This article presents the coupling of magnetic resonance imaging (MRI) measurements and computational fluid dynamics (CFD) for accurate characterisation of fluid flow and identification of flow domains. Currently, MRI measurements are averaged over time and space, assuming a certain smoothness of the velocity and pressure space. However, a possible solution of a fluid problem must fulfil the Navier–Stokes equations, which sets up a condition that is much more restrictive than the usual smoothness assumptions in e.g. curve fitting. The novel CFD-MRI method uses this insight to reduce the statistical noise and to identify finer structures of the underlying domain. The problem is formulated as a distributed control problem which minimises the distance between measured and simulated flow field. Thereby, the simulated flow field is the solution of a parametrised porous media BGK-Boltzmann equation which approaches a homogenised Navier–Stokes equation in the hydrodynamic limit. The parameters represent the porosity distributed in the domain which yields a domain and a fluid flow that fits best to the measured data. This enables the method they locate an obstacle and the flow field from limited 2D spatially resolved MRI data with one velocity component. The problem is solved with an adjoint lattice Boltzmann method (ALBM) using the open source software OpenLB11http://www.openlb.net.</description><identifier>ISSN: 0045-7930</identifier><identifier>EISSN: 1879-0747</identifier><identifier>DOI: 10.1016/j.compfluid.2018.02.022</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Boltzmann transport equation ; Computational fluid dynamics ; Computer simulation ; Curve fitting ; Domain identification ; Fluid characterisation ; Fluid dynamics ; Fluid flow ; Lattice Boltzmann method ; Magnetic fields ; Magnetic resonance imaging ; MRI ; Navier-Stokes equations ; NMR ; Noise reduction ; Nuclear magnetic resonance ; Optimisation ; Porosity ; Porous media ; Simulation ; Smoothness ; Two dimensional flow</subject><ispartof>Computers &amp; fluids, 2018-04, Vol.166, p.218-224</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 30, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-59d2becff9709628cf658c701dcd1e5c4f96cd082f234184262d33fdaf45981a3</citedby><cites>FETCH-LOGICAL-c392t-59d2becff9709628cf658c701dcd1e5c4f96cd082f234184262d33fdaf45981a3</cites><orcidid>0000-0003-1026-6462</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compfluid.2018.02.022$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Klemens, Fabian</creatorcontrib><creatorcontrib>Schuhmann, Sebastian</creatorcontrib><creatorcontrib>Guthausen, Gisela</creatorcontrib><creatorcontrib>Thäter, Gudrun</creatorcontrib><creatorcontrib>Krause, Mathias J.</creatorcontrib><title>CFD-MRI: A coupled measurement and simulation approach for accurate fluid flow characterisation and domain identification</title><title>Computers &amp; fluids</title><description>•The CFD-MRI method for accurate fluid flow characterisation and domain identification is proposed.•Simulation and measurement data are combined to an optimisation problem.•The method is able to locate an object and accurately characterise the fluid flow using only 2D spatially resolved MRI data.•As a result, the measurement noise was significantly reduced. This article presents the coupling of magnetic resonance imaging (MRI) measurements and computational fluid dynamics (CFD) for accurate characterisation of fluid flow and identification of flow domains. Currently, MRI measurements are averaged over time and space, assuming a certain smoothness of the velocity and pressure space. However, a possible solution of a fluid problem must fulfil the Navier–Stokes equations, which sets up a condition that is much more restrictive than the usual smoothness assumptions in e.g. curve fitting. The novel CFD-MRI method uses this insight to reduce the statistical noise and to identify finer structures of the underlying domain. The problem is formulated as a distributed control problem which minimises the distance between measured and simulated flow field. Thereby, the simulated flow field is the solution of a parametrised porous media BGK-Boltzmann equation which approaches a homogenised Navier–Stokes equation in the hydrodynamic limit. The parameters represent the porosity distributed in the domain which yields a domain and a fluid flow that fits best to the measured data. This enables the method they locate an obstacle and the flow field from limited 2D spatially resolved MRI data with one velocity component. The problem is solved with an adjoint lattice Boltzmann method (ALBM) using the open source software OpenLB11http://www.openlb.net.</description><subject>Boltzmann transport equation</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Curve fitting</subject><subject>Domain identification</subject><subject>Fluid characterisation</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Lattice Boltzmann method</subject><subject>Magnetic fields</subject><subject>Magnetic resonance imaging</subject><subject>MRI</subject><subject>Navier-Stokes equations</subject><subject>NMR</subject><subject>Noise reduction</subject><subject>Nuclear magnetic resonance</subject><subject>Optimisation</subject><subject>Porosity</subject><subject>Porous media</subject><subject>Simulation</subject><subject>Smoothness</subject><subject>Two dimensional flow</subject><issn>0045-7930</issn><issn>1879-0747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFUN9LwzAQDqLgnP4NBnxuTdIfaX0b0-lgIog-h3hJWErb1KRV9t-bbeKrcNxx3Pd9d_chdE1JSgktb5sUXDeYdrIqZYRWKWEx2Ama0YrXCeE5P0UzQvIi4XVGztFFCA2JfcbyGdotV_fJ8-v6Di8wuGlotcKdlmHyutP9iGWvcLDd1MrRuh7LYfBOwhYb57EEmLwcNT4sj9l9Y9hKL2HU3oZfRhRQrpO2x1ZFRWssHCaX6MzINuir3zpH76uHt-VTsnl5XC8XmwSymo1JUSv2ocGYmpO6ZBWYsqiAE6pAUV1AbuoSFKmYYVlOq5yVTGWZUdLkRV1Rmc3RzVE3Xv456TCKxk2-jysFI2XGIyznEcWPKPAuBK-NGLztpN8JSsTeZ9GIP5_F3mdBWAwWmYsjU8cnvqz2IoDVPWhlvYZRKGf_1fgBNQOMpg</recordid><startdate>20180430</startdate><enddate>20180430</enddate><creator>Klemens, Fabian</creator><creator>Schuhmann, Sebastian</creator><creator>Guthausen, Gisela</creator><creator>Thäter, Gudrun</creator><creator>Krause, Mathias J.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1026-6462</orcidid></search><sort><creationdate>20180430</creationdate><title>CFD-MRI: A coupled measurement and simulation approach for accurate fluid flow characterisation and domain identification</title><author>Klemens, Fabian ; Schuhmann, Sebastian ; Guthausen, Gisela ; Thäter, Gudrun ; Krause, Mathias J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-59d2becff9709628cf658c701dcd1e5c4f96cd082f234184262d33fdaf45981a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Boltzmann transport equation</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Curve fitting</topic><topic>Domain identification</topic><topic>Fluid characterisation</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Lattice Boltzmann method</topic><topic>Magnetic fields</topic><topic>Magnetic resonance imaging</topic><topic>MRI</topic><topic>Navier-Stokes equations</topic><topic>NMR</topic><topic>Noise reduction</topic><topic>Nuclear magnetic resonance</topic><topic>Optimisation</topic><topic>Porosity</topic><topic>Porous media</topic><topic>Simulation</topic><topic>Smoothness</topic><topic>Two dimensional flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klemens, Fabian</creatorcontrib><creatorcontrib>Schuhmann, Sebastian</creatorcontrib><creatorcontrib>Guthausen, Gisela</creatorcontrib><creatorcontrib>Thäter, Gudrun</creatorcontrib><creatorcontrib>Krause, Mathias J.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klemens, Fabian</au><au>Schuhmann, Sebastian</au><au>Guthausen, Gisela</au><au>Thäter, Gudrun</au><au>Krause, Mathias J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CFD-MRI: A coupled measurement and simulation approach for accurate fluid flow characterisation and domain identification</atitle><jtitle>Computers &amp; fluids</jtitle><date>2018-04-30</date><risdate>2018</risdate><volume>166</volume><spage>218</spage><epage>224</epage><pages>218-224</pages><issn>0045-7930</issn><eissn>1879-0747</eissn><abstract>•The CFD-MRI method for accurate fluid flow characterisation and domain identification is proposed.•Simulation and measurement data are combined to an optimisation problem.•The method is able to locate an object and accurately characterise the fluid flow using only 2D spatially resolved MRI data.•As a result, the measurement noise was significantly reduced. This article presents the coupling of magnetic resonance imaging (MRI) measurements and computational fluid dynamics (CFD) for accurate characterisation of fluid flow and identification of flow domains. Currently, MRI measurements are averaged over time and space, assuming a certain smoothness of the velocity and pressure space. However, a possible solution of a fluid problem must fulfil the Navier–Stokes equations, which sets up a condition that is much more restrictive than the usual smoothness assumptions in e.g. curve fitting. The novel CFD-MRI method uses this insight to reduce the statistical noise and to identify finer structures of the underlying domain. The problem is formulated as a distributed control problem which minimises the distance between measured and simulated flow field. Thereby, the simulated flow field is the solution of a parametrised porous media BGK-Boltzmann equation which approaches a homogenised Navier–Stokes equation in the hydrodynamic limit. The parameters represent the porosity distributed in the domain which yields a domain and a fluid flow that fits best to the measured data. This enables the method they locate an obstacle and the flow field from limited 2D spatially resolved MRI data with one velocity component. The problem is solved with an adjoint lattice Boltzmann method (ALBM) using the open source software OpenLB11http://www.openlb.net.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compfluid.2018.02.022</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1026-6462</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0045-7930
ispartof Computers & fluids, 2018-04, Vol.166, p.218-224
issn 0045-7930
1879-0747
language eng
recordid cdi_proquest_journals_2063745947
source Elsevier ScienceDirect Journals
subjects Boltzmann transport equation
Computational fluid dynamics
Computer simulation
Curve fitting
Domain identification
Fluid characterisation
Fluid dynamics
Fluid flow
Lattice Boltzmann method
Magnetic fields
Magnetic resonance imaging
MRI
Navier-Stokes equations
NMR
Noise reduction
Nuclear magnetic resonance
Optimisation
Porosity
Porous media
Simulation
Smoothness
Two dimensional flow
title CFD-MRI: A coupled measurement and simulation approach for accurate fluid flow characterisation and domain identification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A12%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CFD-MRI:%20A%20coupled%20measurement%20and%20simulation%20approach%20for%20accurate%20fluid%20flow%20characterisation%20and%20domain%20identification&rft.jtitle=Computers%20&%20fluids&rft.au=Klemens,%20Fabian&rft.date=2018-04-30&rft.volume=166&rft.spage=218&rft.epage=224&rft.pages=218-224&rft.issn=0045-7930&rft.eissn=1879-0747&rft_id=info:doi/10.1016/j.compfluid.2018.02.022&rft_dat=%3Cproquest_cross%3E2063745947%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2063745947&rft_id=info:pmid/&rft_els_id=S004579301830077X&rfr_iscdi=true