Ultralow electrical percolation in melt-compounded polymer composites based on chemically expanded graphite
It has been difficult to construct electrical percolation networks in melt-compounded polymer composites due to shear-induced network destruction, especially for low graphene content composites. To overcome this issue, here we employ chemically expanded graphite (CEG) to construct conductive network...
Gespeichert in:
Veröffentlicht in: | Composites science and technology 2018-04, Vol.158, p.147-155 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 155 |
---|---|
container_issue | |
container_start_page | 147 |
container_title | Composites science and technology |
container_volume | 158 |
creator | Wang, Peng Chong, Haodan Zhang, Jiajia Yang, Yanhao Lu, Hongbin |
description | It has been difficult to construct electrical percolation networks in melt-compounded polymer composites due to shear-induced network destruction, especially for low graphene content composites. To overcome this issue, here we employ chemically expanded graphite (CEG) to construct conductive networks in which the polymer molecules would penetrate into the inner part of CEG to form a polymer entrapped in CEG structure. This novel polymer entrapped in CEG structure is very useful for the effective charge transfer and further construction of conductive networks in the process of melt compounding. The final polymer composites exhibit an ultralow electrical conductive percolation threshold of 0.29 vol% after melt compounding which is almost among the lowest level compared with those of other melt-compounded polymer composites. Besides, the thermal conductivity of the composites is also significantly enhanced. This strategy here has provided a new way to maintain the conductive networks and decrease the electrical percolation threshold in the melt-compounded polymer composites through constructing polymer entrapped in conductive fillers structure. |
doi_str_mv | 10.1016/j.compscitech.2018.01.022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2063745734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266353817329512</els_id><sourcerecordid>2063745734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-e97e35c9694b53d3b6e3b716526be05ace961e8cb4abcca783f9ddc12011c5953</originalsourceid><addsrcrecordid>eNqNkE1P4zAQhq0VSFvK_ocgzsmO49iJj6jiS6rEBc6WM5lu03XiYKdA__26dA8cOVkaP_O-moexKw4FB65-7wr0wxSxnwm3RQm8KYAXUJY_2II3tc45SDhjCyiVyoUUzU92EeMOAGqpywX7--LmYJ1_z8gRzqFH67KJAnpn596PWT9mA7k5P9b4_dhRl03eHQYK2ecopuaYtTamj4TjloZjhjtk9DHZT_5PsNM2YZfsfGNdpF__3yV7ubt9Xj3k66f7x9XNOscKYM5J1yQkaqWrVopOtIpEW3MlS9USSIukFacG28q2iLZuxEZ3HfJ0PEeppViy61PuFPzrnuJsdn4fxlRpSlCirmQtqkTpE4XBxxhoY6bQDzYcDAdzdGt25otbc3RrgJvkNu2uTruUznjrKZhE0YjU9SFZNJ3vv5HyD50hi5s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2063745734</pqid></control><display><type>article</type><title>Ultralow electrical percolation in melt-compounded polymer composites based on chemically expanded graphite</title><source>Access via ScienceDirect (Elsevier)</source><creator>Wang, Peng ; Chong, Haodan ; Zhang, Jiajia ; Yang, Yanhao ; Lu, Hongbin</creator><creatorcontrib>Wang, Peng ; Chong, Haodan ; Zhang, Jiajia ; Yang, Yanhao ; Lu, Hongbin</creatorcontrib><description>It has been difficult to construct electrical percolation networks in melt-compounded polymer composites due to shear-induced network destruction, especially for low graphene content composites. To overcome this issue, here we employ chemically expanded graphite (CEG) to construct conductive networks in which the polymer molecules would penetrate into the inner part of CEG to form a polymer entrapped in CEG structure. This novel polymer entrapped in CEG structure is very useful for the effective charge transfer and further construction of conductive networks in the process of melt compounding. The final polymer composites exhibit an ultralow electrical conductive percolation threshold of 0.29 vol% after melt compounding which is almost among the lowest level compared with those of other melt-compounded polymer composites. Besides, the thermal conductivity of the composites is also significantly enhanced. This strategy here has provided a new way to maintain the conductive networks and decrease the electrical percolation threshold in the melt-compounded polymer composites through constructing polymer entrapped in conductive fillers structure.</description><identifier>ISSN: 0266-3538</identifier><identifier>EISSN: 1879-1050</identifier><identifier>DOI: 10.1016/j.compscitech.2018.01.022</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>Charge transfer ; Chemically expanded graphite ; Composite materials ; Compounding ; Construction ; Electrical resistivity ; Fillers ; Graphite ; Melt compounding ; Molecular chains ; Networks ; Novel structure ; Organic chemistry ; Percolation ; Polymer composites ; Polymer matrix composites ; Polymers ; Thermal conductivity ; Ultralow electrical percolation threshold</subject><ispartof>Composites science and technology, 2018-04, Vol.158, p.147-155</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 12, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-e97e35c9694b53d3b6e3b716526be05ace961e8cb4abcca783f9ddc12011c5953</citedby><cites>FETCH-LOGICAL-c400t-e97e35c9694b53d3b6e3b716526be05ace961e8cb4abcca783f9ddc12011c5953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compscitech.2018.01.022$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Chong, Haodan</creatorcontrib><creatorcontrib>Zhang, Jiajia</creatorcontrib><creatorcontrib>Yang, Yanhao</creatorcontrib><creatorcontrib>Lu, Hongbin</creatorcontrib><title>Ultralow electrical percolation in melt-compounded polymer composites based on chemically expanded graphite</title><title>Composites science and technology</title><description>It has been difficult to construct electrical percolation networks in melt-compounded polymer composites due to shear-induced network destruction, especially for low graphene content composites. To overcome this issue, here we employ chemically expanded graphite (CEG) to construct conductive networks in which the polymer molecules would penetrate into the inner part of CEG to form a polymer entrapped in CEG structure. This novel polymer entrapped in CEG structure is very useful for the effective charge transfer and further construction of conductive networks in the process of melt compounding. The final polymer composites exhibit an ultralow electrical conductive percolation threshold of 0.29 vol% after melt compounding which is almost among the lowest level compared with those of other melt-compounded polymer composites. Besides, the thermal conductivity of the composites is also significantly enhanced. This strategy here has provided a new way to maintain the conductive networks and decrease the electrical percolation threshold in the melt-compounded polymer composites through constructing polymer entrapped in conductive fillers structure.</description><subject>Charge transfer</subject><subject>Chemically expanded graphite</subject><subject>Composite materials</subject><subject>Compounding</subject><subject>Construction</subject><subject>Electrical resistivity</subject><subject>Fillers</subject><subject>Graphite</subject><subject>Melt compounding</subject><subject>Molecular chains</subject><subject>Networks</subject><subject>Novel structure</subject><subject>Organic chemistry</subject><subject>Percolation</subject><subject>Polymer composites</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Thermal conductivity</subject><subject>Ultralow electrical percolation threshold</subject><issn>0266-3538</issn><issn>1879-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkE1P4zAQhq0VSFvK_ocgzsmO49iJj6jiS6rEBc6WM5lu03XiYKdA__26dA8cOVkaP_O-moexKw4FB65-7wr0wxSxnwm3RQm8KYAXUJY_2II3tc45SDhjCyiVyoUUzU92EeMOAGqpywX7--LmYJ1_z8gRzqFH67KJAnpn596PWT9mA7k5P9b4_dhRl03eHQYK2ecopuaYtTamj4TjloZjhjtk9DHZT_5PsNM2YZfsfGNdpF__3yV7ubt9Xj3k66f7x9XNOscKYM5J1yQkaqWrVopOtIpEW3MlS9USSIukFacG28q2iLZuxEZ3HfJ0PEeppViy61PuFPzrnuJsdn4fxlRpSlCirmQtqkTpE4XBxxhoY6bQDzYcDAdzdGt25otbc3RrgJvkNu2uTruUznjrKZhE0YjU9SFZNJ3vv5HyD50hi5s</recordid><startdate>20180412</startdate><enddate>20180412</enddate><creator>Wang, Peng</creator><creator>Chong, Haodan</creator><creator>Zhang, Jiajia</creator><creator>Yang, Yanhao</creator><creator>Lu, Hongbin</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20180412</creationdate><title>Ultralow electrical percolation in melt-compounded polymer composites based on chemically expanded graphite</title><author>Wang, Peng ; Chong, Haodan ; Zhang, Jiajia ; Yang, Yanhao ; Lu, Hongbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-e97e35c9694b53d3b6e3b716526be05ace961e8cb4abcca783f9ddc12011c5953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Charge transfer</topic><topic>Chemically expanded graphite</topic><topic>Composite materials</topic><topic>Compounding</topic><topic>Construction</topic><topic>Electrical resistivity</topic><topic>Fillers</topic><topic>Graphite</topic><topic>Melt compounding</topic><topic>Molecular chains</topic><topic>Networks</topic><topic>Novel structure</topic><topic>Organic chemistry</topic><topic>Percolation</topic><topic>Polymer composites</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Thermal conductivity</topic><topic>Ultralow electrical percolation threshold</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Chong, Haodan</creatorcontrib><creatorcontrib>Zhang, Jiajia</creatorcontrib><creatorcontrib>Yang, Yanhao</creatorcontrib><creatorcontrib>Lu, Hongbin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Composites science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Peng</au><au>Chong, Haodan</au><au>Zhang, Jiajia</au><au>Yang, Yanhao</au><au>Lu, Hongbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultralow electrical percolation in melt-compounded polymer composites based on chemically expanded graphite</atitle><jtitle>Composites science and technology</jtitle><date>2018-04-12</date><risdate>2018</risdate><volume>158</volume><spage>147</spage><epage>155</epage><pages>147-155</pages><issn>0266-3538</issn><eissn>1879-1050</eissn><abstract>It has been difficult to construct electrical percolation networks in melt-compounded polymer composites due to shear-induced network destruction, especially for low graphene content composites. To overcome this issue, here we employ chemically expanded graphite (CEG) to construct conductive networks in which the polymer molecules would penetrate into the inner part of CEG to form a polymer entrapped in CEG structure. This novel polymer entrapped in CEG structure is very useful for the effective charge transfer and further construction of conductive networks in the process of melt compounding. The final polymer composites exhibit an ultralow electrical conductive percolation threshold of 0.29 vol% after melt compounding which is almost among the lowest level compared with those of other melt-compounded polymer composites. Besides, the thermal conductivity of the composites is also significantly enhanced. This strategy here has provided a new way to maintain the conductive networks and decrease the electrical percolation threshold in the melt-compounded polymer composites through constructing polymer entrapped in conductive fillers structure.</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compscitech.2018.01.022</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-3538 |
ispartof | Composites science and technology, 2018-04, Vol.158, p.147-155 |
issn | 0266-3538 1879-1050 |
language | eng |
recordid | cdi_proquest_journals_2063745734 |
source | Access via ScienceDirect (Elsevier) |
subjects | Charge transfer Chemically expanded graphite Composite materials Compounding Construction Electrical resistivity Fillers Graphite Melt compounding Molecular chains Networks Novel structure Organic chemistry Percolation Polymer composites Polymer matrix composites Polymers Thermal conductivity Ultralow electrical percolation threshold |
title | Ultralow electrical percolation in melt-compounded polymer composites based on chemically expanded graphite |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A30%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultralow%20electrical%20percolation%20in%20melt-compounded%20polymer%20composites%20based%20on%20chemically%20expanded%20graphite&rft.jtitle=Composites%20science%20and%20technology&rft.au=Wang,%20Peng&rft.date=2018-04-12&rft.volume=158&rft.spage=147&rft.epage=155&rft.pages=147-155&rft.issn=0266-3538&rft.eissn=1879-1050&rft_id=info:doi/10.1016/j.compscitech.2018.01.022&rft_dat=%3Cproquest_cross%3E2063745734%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2063745734&rft_id=info:pmid/&rft_els_id=S0266353817329512&rfr_iscdi=true |