Ultralow electrical percolation in melt-compounded polymer composites based on chemically expanded graphite

It has been difficult to construct electrical percolation networks in melt-compounded polymer composites due to shear-induced network destruction, especially for low graphene content composites. To overcome this issue, here we employ chemically expanded graphite (CEG) to construct conductive network...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites science and technology 2018-04, Vol.158, p.147-155
Hauptverfasser: Wang, Peng, Chong, Haodan, Zhang, Jiajia, Yang, Yanhao, Lu, Hongbin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 155
container_issue
container_start_page 147
container_title Composites science and technology
container_volume 158
creator Wang, Peng
Chong, Haodan
Zhang, Jiajia
Yang, Yanhao
Lu, Hongbin
description It has been difficult to construct electrical percolation networks in melt-compounded polymer composites due to shear-induced network destruction, especially for low graphene content composites. To overcome this issue, here we employ chemically expanded graphite (CEG) to construct conductive networks in which the polymer molecules would penetrate into the inner part of CEG to form a polymer entrapped in CEG structure. This novel polymer entrapped in CEG structure is very useful for the effective charge transfer and further construction of conductive networks in the process of melt compounding. The final polymer composites exhibit an ultralow electrical conductive percolation threshold of 0.29 vol% after melt compounding which is almost among the lowest level compared with those of other melt-compounded polymer composites. Besides, the thermal conductivity of the composites is also significantly enhanced. This strategy here has provided a new way to maintain the conductive networks and decrease the electrical percolation threshold in the melt-compounded polymer composites through constructing polymer entrapped in conductive fillers structure.
doi_str_mv 10.1016/j.compscitech.2018.01.022
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2063745734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266353817329512</els_id><sourcerecordid>2063745734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-e97e35c9694b53d3b6e3b716526be05ace961e8cb4abcca783f9ddc12011c5953</originalsourceid><addsrcrecordid>eNqNkE1P4zAQhq0VSFvK_ocgzsmO49iJj6jiS6rEBc6WM5lu03XiYKdA__26dA8cOVkaP_O-moexKw4FB65-7wr0wxSxnwm3RQm8KYAXUJY_2II3tc45SDhjCyiVyoUUzU92EeMOAGqpywX7--LmYJ1_z8gRzqFH67KJAnpn596PWT9mA7k5P9b4_dhRl03eHQYK2ecopuaYtTamj4TjloZjhjtk9DHZT_5PsNM2YZfsfGNdpF__3yV7ubt9Xj3k66f7x9XNOscKYM5J1yQkaqWrVopOtIpEW3MlS9USSIukFacG28q2iLZuxEZ3HfJ0PEeppViy61PuFPzrnuJsdn4fxlRpSlCirmQtqkTpE4XBxxhoY6bQDzYcDAdzdGt25otbc3RrgJvkNu2uTruUznjrKZhE0YjU9SFZNJ3vv5HyD50hi5s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2063745734</pqid></control><display><type>article</type><title>Ultralow electrical percolation in melt-compounded polymer composites based on chemically expanded graphite</title><source>Access via ScienceDirect (Elsevier)</source><creator>Wang, Peng ; Chong, Haodan ; Zhang, Jiajia ; Yang, Yanhao ; Lu, Hongbin</creator><creatorcontrib>Wang, Peng ; Chong, Haodan ; Zhang, Jiajia ; Yang, Yanhao ; Lu, Hongbin</creatorcontrib><description>It has been difficult to construct electrical percolation networks in melt-compounded polymer composites due to shear-induced network destruction, especially for low graphene content composites. To overcome this issue, here we employ chemically expanded graphite (CEG) to construct conductive networks in which the polymer molecules would penetrate into the inner part of CEG to form a polymer entrapped in CEG structure. This novel polymer entrapped in CEG structure is very useful for the effective charge transfer and further construction of conductive networks in the process of melt compounding. The final polymer composites exhibit an ultralow electrical conductive percolation threshold of 0.29 vol% after melt compounding which is almost among the lowest level compared with those of other melt-compounded polymer composites. Besides, the thermal conductivity of the composites is also significantly enhanced. This strategy here has provided a new way to maintain the conductive networks and decrease the electrical percolation threshold in the melt-compounded polymer composites through constructing polymer entrapped in conductive fillers structure.</description><identifier>ISSN: 0266-3538</identifier><identifier>EISSN: 1879-1050</identifier><identifier>DOI: 10.1016/j.compscitech.2018.01.022</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>Charge transfer ; Chemically expanded graphite ; Composite materials ; Compounding ; Construction ; Electrical resistivity ; Fillers ; Graphite ; Melt compounding ; Molecular chains ; Networks ; Novel structure ; Organic chemistry ; Percolation ; Polymer composites ; Polymer matrix composites ; Polymers ; Thermal conductivity ; Ultralow electrical percolation threshold</subject><ispartof>Composites science and technology, 2018-04, Vol.158, p.147-155</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 12, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-e97e35c9694b53d3b6e3b716526be05ace961e8cb4abcca783f9ddc12011c5953</citedby><cites>FETCH-LOGICAL-c400t-e97e35c9694b53d3b6e3b716526be05ace961e8cb4abcca783f9ddc12011c5953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compscitech.2018.01.022$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Chong, Haodan</creatorcontrib><creatorcontrib>Zhang, Jiajia</creatorcontrib><creatorcontrib>Yang, Yanhao</creatorcontrib><creatorcontrib>Lu, Hongbin</creatorcontrib><title>Ultralow electrical percolation in melt-compounded polymer composites based on chemically expanded graphite</title><title>Composites science and technology</title><description>It has been difficult to construct electrical percolation networks in melt-compounded polymer composites due to shear-induced network destruction, especially for low graphene content composites. To overcome this issue, here we employ chemically expanded graphite (CEG) to construct conductive networks in which the polymer molecules would penetrate into the inner part of CEG to form a polymer entrapped in CEG structure. This novel polymer entrapped in CEG structure is very useful for the effective charge transfer and further construction of conductive networks in the process of melt compounding. The final polymer composites exhibit an ultralow electrical conductive percolation threshold of 0.29 vol% after melt compounding which is almost among the lowest level compared with those of other melt-compounded polymer composites. Besides, the thermal conductivity of the composites is also significantly enhanced. This strategy here has provided a new way to maintain the conductive networks and decrease the electrical percolation threshold in the melt-compounded polymer composites through constructing polymer entrapped in conductive fillers structure.</description><subject>Charge transfer</subject><subject>Chemically expanded graphite</subject><subject>Composite materials</subject><subject>Compounding</subject><subject>Construction</subject><subject>Electrical resistivity</subject><subject>Fillers</subject><subject>Graphite</subject><subject>Melt compounding</subject><subject>Molecular chains</subject><subject>Networks</subject><subject>Novel structure</subject><subject>Organic chemistry</subject><subject>Percolation</subject><subject>Polymer composites</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Thermal conductivity</subject><subject>Ultralow electrical percolation threshold</subject><issn>0266-3538</issn><issn>1879-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkE1P4zAQhq0VSFvK_ocgzsmO49iJj6jiS6rEBc6WM5lu03XiYKdA__26dA8cOVkaP_O-moexKw4FB65-7wr0wxSxnwm3RQm8KYAXUJY_2II3tc45SDhjCyiVyoUUzU92EeMOAGqpywX7--LmYJ1_z8gRzqFH67KJAnpn596PWT9mA7k5P9b4_dhRl03eHQYK2ecopuaYtTamj4TjloZjhjtk9DHZT_5PsNM2YZfsfGNdpF__3yV7ubt9Xj3k66f7x9XNOscKYM5J1yQkaqWrVopOtIpEW3MlS9USSIukFacG28q2iLZuxEZ3HfJ0PEeppViy61PuFPzrnuJsdn4fxlRpSlCirmQtqkTpE4XBxxhoY6bQDzYcDAdzdGt25otbc3RrgJvkNu2uTruUznjrKZhE0YjU9SFZNJ3vv5HyD50hi5s</recordid><startdate>20180412</startdate><enddate>20180412</enddate><creator>Wang, Peng</creator><creator>Chong, Haodan</creator><creator>Zhang, Jiajia</creator><creator>Yang, Yanhao</creator><creator>Lu, Hongbin</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20180412</creationdate><title>Ultralow electrical percolation in melt-compounded polymer composites based on chemically expanded graphite</title><author>Wang, Peng ; Chong, Haodan ; Zhang, Jiajia ; Yang, Yanhao ; Lu, Hongbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-e97e35c9694b53d3b6e3b716526be05ace961e8cb4abcca783f9ddc12011c5953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Charge transfer</topic><topic>Chemically expanded graphite</topic><topic>Composite materials</topic><topic>Compounding</topic><topic>Construction</topic><topic>Electrical resistivity</topic><topic>Fillers</topic><topic>Graphite</topic><topic>Melt compounding</topic><topic>Molecular chains</topic><topic>Networks</topic><topic>Novel structure</topic><topic>Organic chemistry</topic><topic>Percolation</topic><topic>Polymer composites</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Thermal conductivity</topic><topic>Ultralow electrical percolation threshold</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Chong, Haodan</creatorcontrib><creatorcontrib>Zhang, Jiajia</creatorcontrib><creatorcontrib>Yang, Yanhao</creatorcontrib><creatorcontrib>Lu, Hongbin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Composites science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Peng</au><au>Chong, Haodan</au><au>Zhang, Jiajia</au><au>Yang, Yanhao</au><au>Lu, Hongbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultralow electrical percolation in melt-compounded polymer composites based on chemically expanded graphite</atitle><jtitle>Composites science and technology</jtitle><date>2018-04-12</date><risdate>2018</risdate><volume>158</volume><spage>147</spage><epage>155</epage><pages>147-155</pages><issn>0266-3538</issn><eissn>1879-1050</eissn><abstract>It has been difficult to construct electrical percolation networks in melt-compounded polymer composites due to shear-induced network destruction, especially for low graphene content composites. To overcome this issue, here we employ chemically expanded graphite (CEG) to construct conductive networks in which the polymer molecules would penetrate into the inner part of CEG to form a polymer entrapped in CEG structure. This novel polymer entrapped in CEG structure is very useful for the effective charge transfer and further construction of conductive networks in the process of melt compounding. The final polymer composites exhibit an ultralow electrical conductive percolation threshold of 0.29 vol% after melt compounding which is almost among the lowest level compared with those of other melt-compounded polymer composites. Besides, the thermal conductivity of the composites is also significantly enhanced. This strategy here has provided a new way to maintain the conductive networks and decrease the electrical percolation threshold in the melt-compounded polymer composites through constructing polymer entrapped in conductive fillers structure.</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compscitech.2018.01.022</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0266-3538
ispartof Composites science and technology, 2018-04, Vol.158, p.147-155
issn 0266-3538
1879-1050
language eng
recordid cdi_proquest_journals_2063745734
source Access via ScienceDirect (Elsevier)
subjects Charge transfer
Chemically expanded graphite
Composite materials
Compounding
Construction
Electrical resistivity
Fillers
Graphite
Melt compounding
Molecular chains
Networks
Novel structure
Organic chemistry
Percolation
Polymer composites
Polymer matrix composites
Polymers
Thermal conductivity
Ultralow electrical percolation threshold
title Ultralow electrical percolation in melt-compounded polymer composites based on chemically expanded graphite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A30%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultralow%20electrical%20percolation%20in%20melt-compounded%20polymer%20composites%20based%20on%20chemically%20expanded%20graphite&rft.jtitle=Composites%20science%20and%20technology&rft.au=Wang,%20Peng&rft.date=2018-04-12&rft.volume=158&rft.spage=147&rft.epage=155&rft.pages=147-155&rft.issn=0266-3538&rft.eissn=1879-1050&rft_id=info:doi/10.1016/j.compscitech.2018.01.022&rft_dat=%3Cproquest_cross%3E2063745734%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2063745734&rft_id=info:pmid/&rft_els_id=S0266353817329512&rfr_iscdi=true