On multi-bump solutions of nonlinear Schrödinger equation with electromagnetic fields and critical nonlinearity in R N

In this paper, we study a class of nonlinear Schrödinger equations with electromagnetic fields and critical nonlinearity in RN:-ΔAu+(λV(x)+Z(x))u=βf(|u|2)u+|u|2∗-2u, where f is a continuous function, V,Z:RN→R are continuous functions verifying suitable hypotheses. We show that if the zero set of V(x...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2017-04, Vol.56 (2), p.1-29
Hauptverfasser: Liang, Sihua, Shi, Shaoyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 29
container_issue 2
container_start_page 1
container_title Calculus of variations and partial differential equations
container_volume 56
creator Liang, Sihua
Shi, Shaoyun
description In this paper, we study a class of nonlinear Schrödinger equations with electromagnetic fields and critical nonlinearity in RN:-ΔAu+(λV(x)+Z(x))u=βf(|u|2)u+|u|2∗-2u, where f is a continuous function, V,Z:RN→R are continuous functions verifying suitable hypotheses. We show that if the zero set of V(x) has several isolated connected components Ω1,…,Ωk such that the interior of Ωi is not empty and ∂Ωi is smooth, then for λ>0 large there exists, for any non-empty subset Γ⊂{1,…,k}, a bump solution trapped in a neighborhood of ∪j∈ΓΩj.
doi_str_mv 10.1007/s00526-017-1116-x
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2063653279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2063653279</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-26c1da4cadf862d181502befcb7f4cc8ba74274c9fc4fa116538f627fd4afe073</originalsourceid><addsrcrecordid>eNpFj9tKAzEARIMoWC8f4FvA52hum-w-SvEGxYKX55LNpU1JkzbJUv0xf8Afc0XBp4FhODMDwAXBVwRjeV0wbqhAmEhECBHo_QBMCGcU4ZY1h2CCO84RFaI7BielrDEmTUv5BOznEW6GUD3qh80WlhSG6lMsMDkYUww-WpXhi17lr0_j49JmaHeD-snAva8raIPVNaeNWkZbvYbO22AKVNFAnf3oqPAP8vUD-gif4dMZOHIqFHv-p6fg7e72dfqAZvP7x-nNDG0JYXVcrIlRXCvjWkENaUmDaW-d7qXjWre9kpxKrjunuVPj8Ya1TlDpDFfOYslOweUvd5vTbrClLtZpyHGsXFAs2JinsmPfSSpiVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2063653279</pqid></control><display><type>article</type><title>On multi-bump solutions of nonlinear Schrödinger equation with electromagnetic fields and critical nonlinearity in R N</title><source>SpringerLink Journals</source><creator>Liang, Sihua ; Shi, Shaoyun</creator><creatorcontrib>Liang, Sihua ; Shi, Shaoyun</creatorcontrib><description>In this paper, we study a class of nonlinear Schrödinger equations with electromagnetic fields and critical nonlinearity in RN:-ΔAu+(λV(x)+Z(x))u=βf(|u|2)u+|u|2∗-2u, where f is a continuous function, V,Z:RN→R are continuous functions verifying suitable hypotheses. We show that if the zero set of V(x) has several isolated connected components Ω1,…,Ωk such that the interior of Ωi is not empty and ∂Ωi is smooth, then for λ&gt;0 large there exists, for any non-empty subset Γ⊂{1,…,k}, a bump solution trapped in a neighborhood of ∪j∈ΓΩj.</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-017-1116-x</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Continuity (mathematics) ; Electromagnetic fields ; Electromagnetism ; Nonlinear equations ; Nonlinearity ; Schrodinger equation</subject><ispartof>Calculus of variations and partial differential equations, 2017-04, Vol.56 (2), p.1-29</ispartof><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liang, Sihua</creatorcontrib><creatorcontrib>Shi, Shaoyun</creatorcontrib><title>On multi-bump solutions of nonlinear Schrödinger equation with electromagnetic fields and critical nonlinearity in R N</title><title>Calculus of variations and partial differential equations</title><description>In this paper, we study a class of nonlinear Schrödinger equations with electromagnetic fields and critical nonlinearity in RN:-ΔAu+(λV(x)+Z(x))u=βf(|u|2)u+|u|2∗-2u, where f is a continuous function, V,Z:RN→R are continuous functions verifying suitable hypotheses. We show that if the zero set of V(x) has several isolated connected components Ω1,…,Ωk such that the interior of Ωi is not empty and ∂Ωi is smooth, then for λ&gt;0 large there exists, for any non-empty subset Γ⊂{1,…,k}, a bump solution trapped in a neighborhood of ∪j∈ΓΩj.</description><subject>Continuity (mathematics)</subject><subject>Electromagnetic fields</subject><subject>Electromagnetism</subject><subject>Nonlinear equations</subject><subject>Nonlinearity</subject><subject>Schrodinger equation</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpFj9tKAzEARIMoWC8f4FvA52hum-w-SvEGxYKX55LNpU1JkzbJUv0xf8Afc0XBp4FhODMDwAXBVwRjeV0wbqhAmEhECBHo_QBMCGcU4ZY1h2CCO84RFaI7BielrDEmTUv5BOznEW6GUD3qh80WlhSG6lMsMDkYUww-WpXhi17lr0_j49JmaHeD-snAva8raIPVNaeNWkZbvYbO22AKVNFAnf3oqPAP8vUD-gif4dMZOHIqFHv-p6fg7e72dfqAZvP7x-nNDG0JYXVcrIlRXCvjWkENaUmDaW-d7qXjWre9kpxKrjunuVPj8Ya1TlDpDFfOYslOweUvd5vTbrClLtZpyHGsXFAs2JinsmPfSSpiVQ</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Liang, Sihua</creator><creator>Shi, Shaoyun</creator><general>Springer Nature B.V</general><scope>JQ2</scope></search><sort><creationdate>20170401</creationdate><title>On multi-bump solutions of nonlinear Schrödinger equation with electromagnetic fields and critical nonlinearity in R N</title><author>Liang, Sihua ; Shi, Shaoyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-26c1da4cadf862d181502befcb7f4cc8ba74274c9fc4fa116538f627fd4afe073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Continuity (mathematics)</topic><topic>Electromagnetic fields</topic><topic>Electromagnetism</topic><topic>Nonlinear equations</topic><topic>Nonlinearity</topic><topic>Schrodinger equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Sihua</creatorcontrib><creatorcontrib>Shi, Shaoyun</creatorcontrib><collection>ProQuest Computer Science Collection</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Sihua</au><au>Shi, Shaoyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On multi-bump solutions of nonlinear Schrödinger equation with electromagnetic fields and critical nonlinearity in R N</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><date>2017-04-01</date><risdate>2017</risdate><volume>56</volume><issue>2</issue><spage>1</spage><epage>29</epage><pages>1-29</pages><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>In this paper, we study a class of nonlinear Schrödinger equations with electromagnetic fields and critical nonlinearity in RN:-ΔAu+(λV(x)+Z(x))u=βf(|u|2)u+|u|2∗-2u, where f is a continuous function, V,Z:RN→R are continuous functions verifying suitable hypotheses. We show that if the zero set of V(x) has several isolated connected components Ω1,…,Ωk such that the interior of Ωi is not empty and ∂Ωi is smooth, then for λ&gt;0 large there exists, for any non-empty subset Γ⊂{1,…,k}, a bump solution trapped in a neighborhood of ∪j∈ΓΩj.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00526-017-1116-x</doi><tpages>29</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0944-2669
ispartof Calculus of variations and partial differential equations, 2017-04, Vol.56 (2), p.1-29
issn 0944-2669
1432-0835
language eng
recordid cdi_proquest_journals_2063653279
source SpringerLink Journals
subjects Continuity (mathematics)
Electromagnetic fields
Electromagnetism
Nonlinear equations
Nonlinearity
Schrodinger equation
title On multi-bump solutions of nonlinear Schrödinger equation with electromagnetic fields and critical nonlinearity in R N
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A40%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20multi-bump%20solutions%20of%20nonlinear%20Schr%C3%B6dinger%20equation%20with%20electromagnetic%20fields%20and%20critical%20nonlinearity%20in%20R%20N&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=Liang,%20Sihua&rft.date=2017-04-01&rft.volume=56&rft.issue=2&rft.spage=1&rft.epage=29&rft.pages=1-29&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-017-1116-x&rft_dat=%3Cproquest%3E2063653279%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2063653279&rft_id=info:pmid/&rfr_iscdi=true