On multi-bump solutions of nonlinear Schrödinger equation with electromagnetic fields and critical nonlinearity in R N
In this paper, we study a class of nonlinear Schrödinger equations with electromagnetic fields and critical nonlinearity in RN:-ΔAu+(λV(x)+Z(x))u=βf(|u|2)u+|u|2∗-2u, where f is a continuous function, V,Z:RN→R are continuous functions verifying suitable hypotheses. We show that if the zero set of V(x...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2017-04, Vol.56 (2), p.1-29 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 29 |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | Calculus of variations and partial differential equations |
container_volume | 56 |
creator | Liang, Sihua Shi, Shaoyun |
description | In this paper, we study a class of nonlinear Schrödinger equations with electromagnetic fields and critical nonlinearity in RN:-ΔAu+(λV(x)+Z(x))u=βf(|u|2)u+|u|2∗-2u, where f is a continuous function, V,Z:RN→R are continuous functions verifying suitable hypotheses. We show that if the zero set of V(x) has several isolated connected components Ω1,…,Ωk such that the interior of Ωi is not empty and ∂Ωi is smooth, then for λ>0 large there exists, for any non-empty subset Γ⊂{1,…,k}, a bump solution trapped in a neighborhood of ∪j∈ΓΩj. |
doi_str_mv | 10.1007/s00526-017-1116-x |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2063653279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2063653279</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-26c1da4cadf862d181502befcb7f4cc8ba74274c9fc4fa116538f627fd4afe073</originalsourceid><addsrcrecordid>eNpFj9tKAzEARIMoWC8f4FvA52hum-w-SvEGxYKX55LNpU1JkzbJUv0xf8Afc0XBp4FhODMDwAXBVwRjeV0wbqhAmEhECBHo_QBMCGcU4ZY1h2CCO84RFaI7BielrDEmTUv5BOznEW6GUD3qh80WlhSG6lMsMDkYUww-WpXhi17lr0_j49JmaHeD-snAva8raIPVNaeNWkZbvYbO22AKVNFAnf3oqPAP8vUD-gif4dMZOHIqFHv-p6fg7e72dfqAZvP7x-nNDG0JYXVcrIlRXCvjWkENaUmDaW-d7qXjWre9kpxKrjunuVPj8Ya1TlDpDFfOYslOweUvd5vTbrClLtZpyHGsXFAs2JinsmPfSSpiVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2063653279</pqid></control><display><type>article</type><title>On multi-bump solutions of nonlinear Schrödinger equation with electromagnetic fields and critical nonlinearity in R N</title><source>SpringerLink Journals</source><creator>Liang, Sihua ; Shi, Shaoyun</creator><creatorcontrib>Liang, Sihua ; Shi, Shaoyun</creatorcontrib><description>In this paper, we study a class of nonlinear Schrödinger equations with electromagnetic fields and critical nonlinearity in RN:-ΔAu+(λV(x)+Z(x))u=βf(|u|2)u+|u|2∗-2u, where f is a continuous function, V,Z:RN→R are continuous functions verifying suitable hypotheses. We show that if the zero set of V(x) has several isolated connected components Ω1,…,Ωk such that the interior of Ωi is not empty and ∂Ωi is smooth, then for λ>0 large there exists, for any non-empty subset Γ⊂{1,…,k}, a bump solution trapped in a neighborhood of ∪j∈ΓΩj.</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-017-1116-x</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Continuity (mathematics) ; Electromagnetic fields ; Electromagnetism ; Nonlinear equations ; Nonlinearity ; Schrodinger equation</subject><ispartof>Calculus of variations and partial differential equations, 2017-04, Vol.56 (2), p.1-29</ispartof><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liang, Sihua</creatorcontrib><creatorcontrib>Shi, Shaoyun</creatorcontrib><title>On multi-bump solutions of nonlinear Schrödinger equation with electromagnetic fields and critical nonlinearity in R N</title><title>Calculus of variations and partial differential equations</title><description>In this paper, we study a class of nonlinear Schrödinger equations with electromagnetic fields and critical nonlinearity in RN:-ΔAu+(λV(x)+Z(x))u=βf(|u|2)u+|u|2∗-2u, where f is a continuous function, V,Z:RN→R are continuous functions verifying suitable hypotheses. We show that if the zero set of V(x) has several isolated connected components Ω1,…,Ωk such that the interior of Ωi is not empty and ∂Ωi is smooth, then for λ>0 large there exists, for any non-empty subset Γ⊂{1,…,k}, a bump solution trapped in a neighborhood of ∪j∈ΓΩj.</description><subject>Continuity (mathematics)</subject><subject>Electromagnetic fields</subject><subject>Electromagnetism</subject><subject>Nonlinear equations</subject><subject>Nonlinearity</subject><subject>Schrodinger equation</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpFj9tKAzEARIMoWC8f4FvA52hum-w-SvEGxYKX55LNpU1JkzbJUv0xf8Afc0XBp4FhODMDwAXBVwRjeV0wbqhAmEhECBHo_QBMCGcU4ZY1h2CCO84RFaI7BielrDEmTUv5BOznEW6GUD3qh80WlhSG6lMsMDkYUww-WpXhi17lr0_j49JmaHeD-snAva8raIPVNaeNWkZbvYbO22AKVNFAnf3oqPAP8vUD-gif4dMZOHIqFHv-p6fg7e72dfqAZvP7x-nNDG0JYXVcrIlRXCvjWkENaUmDaW-d7qXjWre9kpxKrjunuVPj8Ya1TlDpDFfOYslOweUvd5vTbrClLtZpyHGsXFAs2JinsmPfSSpiVQ</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Liang, Sihua</creator><creator>Shi, Shaoyun</creator><general>Springer Nature B.V</general><scope>JQ2</scope></search><sort><creationdate>20170401</creationdate><title>On multi-bump solutions of nonlinear Schrödinger equation with electromagnetic fields and critical nonlinearity in R N</title><author>Liang, Sihua ; Shi, Shaoyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-26c1da4cadf862d181502befcb7f4cc8ba74274c9fc4fa116538f627fd4afe073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Continuity (mathematics)</topic><topic>Electromagnetic fields</topic><topic>Electromagnetism</topic><topic>Nonlinear equations</topic><topic>Nonlinearity</topic><topic>Schrodinger equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Sihua</creatorcontrib><creatorcontrib>Shi, Shaoyun</creatorcontrib><collection>ProQuest Computer Science Collection</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Sihua</au><au>Shi, Shaoyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On multi-bump solutions of nonlinear Schrödinger equation with electromagnetic fields and critical nonlinearity in R N</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><date>2017-04-01</date><risdate>2017</risdate><volume>56</volume><issue>2</issue><spage>1</spage><epage>29</epage><pages>1-29</pages><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>In this paper, we study a class of nonlinear Schrödinger equations with electromagnetic fields and critical nonlinearity in RN:-ΔAu+(λV(x)+Z(x))u=βf(|u|2)u+|u|2∗-2u, where f is a continuous function, V,Z:RN→R are continuous functions verifying suitable hypotheses. We show that if the zero set of V(x) has several isolated connected components Ω1,…,Ωk such that the interior of Ωi is not empty and ∂Ωi is smooth, then for λ>0 large there exists, for any non-empty subset Γ⊂{1,…,k}, a bump solution trapped in a neighborhood of ∪j∈ΓΩj.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00526-017-1116-x</doi><tpages>29</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0944-2669 |
ispartof | Calculus of variations and partial differential equations, 2017-04, Vol.56 (2), p.1-29 |
issn | 0944-2669 1432-0835 |
language | eng |
recordid | cdi_proquest_journals_2063653279 |
source | SpringerLink Journals |
subjects | Continuity (mathematics) Electromagnetic fields Electromagnetism Nonlinear equations Nonlinearity Schrodinger equation |
title | On multi-bump solutions of nonlinear Schrödinger equation with electromagnetic fields and critical nonlinearity in R N |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A40%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20multi-bump%20solutions%20of%20nonlinear%20Schr%C3%B6dinger%20equation%20with%20electromagnetic%20fields%20and%20critical%20nonlinearity%20in%20R%20N&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=Liang,%20Sihua&rft.date=2017-04-01&rft.volume=56&rft.issue=2&rft.spage=1&rft.epage=29&rft.pages=1-29&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-017-1116-x&rft_dat=%3Cproquest%3E2063653279%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2063653279&rft_id=info:pmid/&rfr_iscdi=true |