Acoustic emission source characterisation using evolutionary optimisation
When a crack initiates and grows in a metal or composite structure, for example, due to high cycle fatigue, the crack propagation gives rise to acoustic emissions (AE)—ultrasonic waves travelling through the structure. Because the presence and rate of growth of any cracks are important pieces of inf...
Gespeichert in:
Veröffentlicht in: | Strain 2018-08, Vol.54 (4), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Strain |
container_volume | 54 |
creator | Worden, K. Spencer, A. B. Packo, P. Staszewski, W. J. Uhl, T. Pierce, S. G. |
description | When a crack initiates and grows in a metal or composite structure, for example, due to high cycle fatigue, the crack propagation gives rise to acoustic emissions (AE)—ultrasonic waves travelling through the structure. Because the presence and rate of growth of any cracks are important pieces of information about the condition or health of the structure, the monitoring of AE activity using sensors mounted on its surface is a potentially useful technique of structural health monitoring. In tests, acoustic emissions are often simulated by breaking a pencil lead against the surface of the structure in a standardised way (a "Hsu‐Nielsen" source), but the forces that this imparts are not well understood at present. The current paper proposes a new evolutionary optimisation‐based approach to source characterisation. The principle is to introduce a parametrised representation of a general source and then identify the parameters that allow the source to best match responses measured elsewhere on the structure. The predicted responses are modelled using a local interaction simulation approach (LISA) algorithm to simulate the propagation of the ultrasonic waves. The approach is validated here using experiments on AE propagation in thin plate‐like structures, where the ultrasound propagates as Lamb waves. Three separate case studies are proposed here. In the first case, an idealised point source is simulated using laser‐generated ultrasound, and the optimisation algorithm uses a two‐dimensional LISA model. A differential evolution optimisation scheme is used to find the optimal profile of forcing to match the simulation with experiment. In the second case, the two‐dimensional LISA approach is used to characterise the forces associated with standard pencil lead breaks. The final study addresses the full three‐dimensional wave propagation. Because of the computational expense of the latter calculation, the LISA algorithm is implemented using a CUDA graphics card computer system. |
doi_str_mv | 10.1111/str.12272 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2063651856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2063651856</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2922-85bd5c9ef5b52c1d5f947ca030428a12fb697747f25e7a1b57137ad918e123353</originalsourceid><addsrcrecordid>eNp1kE1PwzAMhiMEEmNw4B9U4sShW5w0TXucJj4mTUKCcY7SNIVM6zLiFrR_T0p3xRfL9mP71UvILdAZxJhjF2bAmGRnZAKZFClwKs7JhFJepgwovyRXiFtKQZaZnJDVwvgeO2cS2zpE5_cJ-j4Ym5hPHbTpbHCou6Hfo9t_JPbb7_qh1uGY-EPn2tP8mlw0eof25pSn5P3xYbN8TtcvT6vlYp0aVjKWFqKqhSltIyrBDNSiiTqMppxmrNDAmiovpcxkw4SVGiohgUtdl1BYYJwLPiV3491D8F-9xU5to-B9fKkYzXkuoBB5pO5HygSPGGyjDsG1UbMCqganVHRK_TkV2fnI_ridPf4PqrfN67jxC0p_axo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2063651856</pqid></control><display><type>article</type><title>Acoustic emission source characterisation using evolutionary optimisation</title><source>Access via Wiley Online Library</source><creator>Worden, K. ; Spencer, A. B. ; Packo, P. ; Staszewski, W. J. ; Uhl, T. ; Pierce, S. G.</creator><creatorcontrib>Worden, K. ; Spencer, A. B. ; Packo, P. ; Staszewski, W. J. ; Uhl, T. ; Pierce, S. G.</creatorcontrib><description>When a crack initiates and grows in a metal or composite structure, for example, due to high cycle fatigue, the crack propagation gives rise to acoustic emissions (AE)—ultrasonic waves travelling through the structure. Because the presence and rate of growth of any cracks are important pieces of information about the condition or health of the structure, the monitoring of AE activity using sensors mounted on its surface is a potentially useful technique of structural health monitoring. In tests, acoustic emissions are often simulated by breaking a pencil lead against the surface of the structure in a standardised way (a "Hsu‐Nielsen" source), but the forces that this imparts are not well understood at present. The current paper proposes a new evolutionary optimisation‐based approach to source characterisation. The principle is to introduce a parametrised representation of a general source and then identify the parameters that allow the source to best match responses measured elsewhere on the structure. The predicted responses are modelled using a local interaction simulation approach (LISA) algorithm to simulate the propagation of the ultrasonic waves. The approach is validated here using experiments on AE propagation in thin plate‐like structures, where the ultrasound propagates as Lamb waves. Three separate case studies are proposed here. In the first case, an idealised point source is simulated using laser‐generated ultrasound, and the optimisation algorithm uses a two‐dimensional LISA model. A differential evolution optimisation scheme is used to find the optimal profile of forcing to match the simulation with experiment. In the second case, the two‐dimensional LISA approach is used to characterise the forces associated with standard pencil lead breaks. The final study addresses the full three‐dimensional wave propagation. Because of the computational expense of the latter calculation, the LISA algorithm is implemented using a CUDA graphics card computer system.</description><identifier>ISSN: 0039-2103</identifier><identifier>EISSN: 1475-1305</identifier><identifier>DOI: 10.1111/str.12272</identifier><language>eng</language><publisher>Chichester: Wiley Subscription Services, Inc</publisher><subject>acoustic emission (AE) ; Acoustic emission testing ; Acoustic fatigue ; Acoustic propagation ; Acoustics ; Algorithms ; Composite structures ; Computer simulation ; Crack propagation ; CUDA ; differential evolution ; Fatigue cracks ; Fatigue failure ; Fracture mechanics ; High cycle fatigue ; Lamb waves ; local interaction simulation approach (LISA) ; Optimization ; Parameter identification ; Pollution monitoring ; Propagation ; source characterisation ; Structural health monitoring ; Thin plates ; Ultrasonic imaging ; Wave propagation</subject><ispartof>Strain, 2018-08, Vol.54 (4), p.n/a</ispartof><rights>2018 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2922-85bd5c9ef5b52c1d5f947ca030428a12fb697747f25e7a1b57137ad918e123353</cites><orcidid>0000-0002-1035-238X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fstr.12272$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fstr.12272$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids></links><search><creatorcontrib>Worden, K.</creatorcontrib><creatorcontrib>Spencer, A. B.</creatorcontrib><creatorcontrib>Packo, P.</creatorcontrib><creatorcontrib>Staszewski, W. J.</creatorcontrib><creatorcontrib>Uhl, T.</creatorcontrib><creatorcontrib>Pierce, S. G.</creatorcontrib><title>Acoustic emission source characterisation using evolutionary optimisation</title><title>Strain</title><description>When a crack initiates and grows in a metal or composite structure, for example, due to high cycle fatigue, the crack propagation gives rise to acoustic emissions (AE)—ultrasonic waves travelling through the structure. Because the presence and rate of growth of any cracks are important pieces of information about the condition or health of the structure, the monitoring of AE activity using sensors mounted on its surface is a potentially useful technique of structural health monitoring. In tests, acoustic emissions are often simulated by breaking a pencil lead against the surface of the structure in a standardised way (a "Hsu‐Nielsen" source), but the forces that this imparts are not well understood at present. The current paper proposes a new evolutionary optimisation‐based approach to source characterisation. The principle is to introduce a parametrised representation of a general source and then identify the parameters that allow the source to best match responses measured elsewhere on the structure. The predicted responses are modelled using a local interaction simulation approach (LISA) algorithm to simulate the propagation of the ultrasonic waves. The approach is validated here using experiments on AE propagation in thin plate‐like structures, where the ultrasound propagates as Lamb waves. Three separate case studies are proposed here. In the first case, an idealised point source is simulated using laser‐generated ultrasound, and the optimisation algorithm uses a two‐dimensional LISA model. A differential evolution optimisation scheme is used to find the optimal profile of forcing to match the simulation with experiment. In the second case, the two‐dimensional LISA approach is used to characterise the forces associated with standard pencil lead breaks. The final study addresses the full three‐dimensional wave propagation. Because of the computational expense of the latter calculation, the LISA algorithm is implemented using a CUDA graphics card computer system.</description><subject>acoustic emission (AE)</subject><subject>Acoustic emission testing</subject><subject>Acoustic fatigue</subject><subject>Acoustic propagation</subject><subject>Acoustics</subject><subject>Algorithms</subject><subject>Composite structures</subject><subject>Computer simulation</subject><subject>Crack propagation</subject><subject>CUDA</subject><subject>differential evolution</subject><subject>Fatigue cracks</subject><subject>Fatigue failure</subject><subject>Fracture mechanics</subject><subject>High cycle fatigue</subject><subject>Lamb waves</subject><subject>local interaction simulation approach (LISA)</subject><subject>Optimization</subject><subject>Parameter identification</subject><subject>Pollution monitoring</subject><subject>Propagation</subject><subject>source characterisation</subject><subject>Structural health monitoring</subject><subject>Thin plates</subject><subject>Ultrasonic imaging</subject><subject>Wave propagation</subject><issn>0039-2103</issn><issn>1475-1305</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PwzAMhiMEEmNw4B9U4sShW5w0TXucJj4mTUKCcY7SNIVM6zLiFrR_T0p3xRfL9mP71UvILdAZxJhjF2bAmGRnZAKZFClwKs7JhFJepgwovyRXiFtKQZaZnJDVwvgeO2cS2zpE5_cJ-j4Ym5hPHbTpbHCou6Hfo9t_JPbb7_qh1uGY-EPn2tP8mlw0eof25pSn5P3xYbN8TtcvT6vlYp0aVjKWFqKqhSltIyrBDNSiiTqMppxmrNDAmiovpcxkw4SVGiohgUtdl1BYYJwLPiV3491D8F-9xU5to-B9fKkYzXkuoBB5pO5HygSPGGyjDsG1UbMCqganVHRK_TkV2fnI_ridPf4PqrfN67jxC0p_axo</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Worden, K.</creator><creator>Spencer, A. B.</creator><creator>Packo, P.</creator><creator>Staszewski, W. J.</creator><creator>Uhl, T.</creator><creator>Pierce, S. G.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-1035-238X</orcidid></search><sort><creationdate>201808</creationdate><title>Acoustic emission source characterisation using evolutionary optimisation</title><author>Worden, K. ; Spencer, A. B. ; Packo, P. ; Staszewski, W. J. ; Uhl, T. ; Pierce, S. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2922-85bd5c9ef5b52c1d5f947ca030428a12fb697747f25e7a1b57137ad918e123353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>acoustic emission (AE)</topic><topic>Acoustic emission testing</topic><topic>Acoustic fatigue</topic><topic>Acoustic propagation</topic><topic>Acoustics</topic><topic>Algorithms</topic><topic>Composite structures</topic><topic>Computer simulation</topic><topic>Crack propagation</topic><topic>CUDA</topic><topic>differential evolution</topic><topic>Fatigue cracks</topic><topic>Fatigue failure</topic><topic>Fracture mechanics</topic><topic>High cycle fatigue</topic><topic>Lamb waves</topic><topic>local interaction simulation approach (LISA)</topic><topic>Optimization</topic><topic>Parameter identification</topic><topic>Pollution monitoring</topic><topic>Propagation</topic><topic>source characterisation</topic><topic>Structural health monitoring</topic><topic>Thin plates</topic><topic>Ultrasonic imaging</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Worden, K.</creatorcontrib><creatorcontrib>Spencer, A. B.</creatorcontrib><creatorcontrib>Packo, P.</creatorcontrib><creatorcontrib>Staszewski, W. J.</creatorcontrib><creatorcontrib>Uhl, T.</creatorcontrib><creatorcontrib>Pierce, S. G.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Strain</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Worden, K.</au><au>Spencer, A. B.</au><au>Packo, P.</au><au>Staszewski, W. J.</au><au>Uhl, T.</au><au>Pierce, S. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acoustic emission source characterisation using evolutionary optimisation</atitle><jtitle>Strain</jtitle><date>2018-08</date><risdate>2018</risdate><volume>54</volume><issue>4</issue><epage>n/a</epage><issn>0039-2103</issn><eissn>1475-1305</eissn><abstract>When a crack initiates and grows in a metal or composite structure, for example, due to high cycle fatigue, the crack propagation gives rise to acoustic emissions (AE)—ultrasonic waves travelling through the structure. Because the presence and rate of growth of any cracks are important pieces of information about the condition or health of the structure, the monitoring of AE activity using sensors mounted on its surface is a potentially useful technique of structural health monitoring. In tests, acoustic emissions are often simulated by breaking a pencil lead against the surface of the structure in a standardised way (a "Hsu‐Nielsen" source), but the forces that this imparts are not well understood at present. The current paper proposes a new evolutionary optimisation‐based approach to source characterisation. The principle is to introduce a parametrised representation of a general source and then identify the parameters that allow the source to best match responses measured elsewhere on the structure. The predicted responses are modelled using a local interaction simulation approach (LISA) algorithm to simulate the propagation of the ultrasonic waves. The approach is validated here using experiments on AE propagation in thin plate‐like structures, where the ultrasound propagates as Lamb waves. Three separate case studies are proposed here. In the first case, an idealised point source is simulated using laser‐generated ultrasound, and the optimisation algorithm uses a two‐dimensional LISA model. A differential evolution optimisation scheme is used to find the optimal profile of forcing to match the simulation with experiment. In the second case, the two‐dimensional LISA approach is used to characterise the forces associated with standard pencil lead breaks. The final study addresses the full three‐dimensional wave propagation. Because of the computational expense of the latter calculation, the LISA algorithm is implemented using a CUDA graphics card computer system.</abstract><cop>Chichester</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/str.12272</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-1035-238X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0039-2103 |
ispartof | Strain, 2018-08, Vol.54 (4), p.n/a |
issn | 0039-2103 1475-1305 |
language | eng |
recordid | cdi_proquest_journals_2063651856 |
source | Access via Wiley Online Library |
subjects | acoustic emission (AE) Acoustic emission testing Acoustic fatigue Acoustic propagation Acoustics Algorithms Composite structures Computer simulation Crack propagation CUDA differential evolution Fatigue cracks Fatigue failure Fracture mechanics High cycle fatigue Lamb waves local interaction simulation approach (LISA) Optimization Parameter identification Pollution monitoring Propagation source characterisation Structural health monitoring Thin plates Ultrasonic imaging Wave propagation |
title | Acoustic emission source characterisation using evolutionary optimisation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T05%3A39%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acoustic%20emission%20source%20characterisation%20using%20evolutionary%20optimisation&rft.jtitle=Strain&rft.au=Worden,%20K.&rft.date=2018-08&rft.volume=54&rft.issue=4&rft.epage=n/a&rft.issn=0039-2103&rft.eissn=1475-1305&rft_id=info:doi/10.1111/str.12272&rft_dat=%3Cproquest_cross%3E2063651856%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2063651856&rft_id=info:pmid/&rfr_iscdi=true |