Interior Calderón–Zygmund estimates for solutions to general parabolic equations of p-Laplacian type

We study general parabolic equations of the form u t = div A ( x , t , u , D u ) + div ( | F | p - 2 F ) + f whose principal part depends on the solution itself. The vector field A is assumed to have small mean oscillation in x , measurable in t , Lipschitz continuous in u , and its growth in Du is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2017-12, Vol.56 (6), p.1-42, Article 173
1. Verfasser: Nguyen, Truyen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 42
container_issue 6
container_start_page 1
container_title Calculus of variations and partial differential equations
container_volume 56
creator Nguyen, Truyen
description We study general parabolic equations of the form u t = div A ( x , t , u , D u ) + div ( | F | p - 2 F ) + f whose principal part depends on the solution itself. The vector field A is assumed to have small mean oscillation in x , measurable in t , Lipschitz continuous in u , and its growth in Du is like the p -Laplace operator. We establish interior Calderón–Zygmund estimates for locally bounded weak solutions to the equations when p > 2 n / ( n + 2 ) . This is achieved by employing a perturbation method together with developing a two-parameter technique and a new compactness argument. We also make crucial use of the intrinsic geometry method by DiBenedetto (Degenerate parabolic equations, Springer, New York, 1993 ) and the maximal function free approach by Acerbi and Mingione (Duke Math J 136(2):285–320, 2007 ).
doi_str_mv 10.1007/s00526-017-1265-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2063553231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2063553231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-c8b538c6584d300061d825aa980202eea215fde140b599771a5598d696b28763</originalsourceid><addsrcrecordid>eNp1kD1OwzAUxy0EEqVwADZLzIZnO3acEVV8VKrE0onFchKnSpXaqZ0M2bgDR-EI3ISTYBQkJqY3vN__ffwQuqZwSwHyuwggmCRAc0KZFGQ6QQuacUZAcXGKFlBkGWFSFufoIsY9ABWKZQu0W7vBhtYHvDJdbcPnh_t6e3-ddofR1djGoT2YwUbcJCL6bhxa7yIePN5ZZ4PpcG-CKX3XVtgeRzO3fYN7sjF9Z6rWODxMvb1EZ43por36rUu0fXzYrp7J5uVpvbrfkIpTOZBKlYKrSgqV1RwAJK0VE8YUChgwaw2joqktzaAURZHn1AhRqFoWsmQql3yJbuaxffDHMZ2v934MLm3UDCQXgjNOE0Vnqgo-xmAb3Yf0Z5g0Bf2jU886ddKpf3TqKWXYnImJdTsb_ib_H_oGdk96bw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2063553231</pqid></control><display><type>article</type><title>Interior Calderón–Zygmund estimates for solutions to general parabolic equations of p-Laplacian type</title><source>Springer Nature - Complete Springer Journals</source><creator>Nguyen, Truyen</creator><creatorcontrib>Nguyen, Truyen</creatorcontrib><description>We study general parabolic equations of the form u t = div A ( x , t , u , D u ) + div ( | F | p - 2 F ) + f whose principal part depends on the solution itself. The vector field A is assumed to have small mean oscillation in x , measurable in t , Lipschitz continuous in u , and its growth in Du is like the p -Laplace operator. We establish interior Calderón–Zygmund estimates for locally bounded weak solutions to the equations when p &gt; 2 n / ( n + 2 ) . This is achieved by employing a perturbation method together with developing a two-parameter technique and a new compactness argument. We also make crucial use of the intrinsic geometry method by DiBenedetto (Degenerate parabolic equations, Springer, New York, 1993 ) and the maximal function free approach by Acerbi and Mingione (Duke Math J 136(2):285–320, 2007 ).</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-017-1265-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Calculus of Variations and Optimal Control; Optimization ; Control ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Perturbation methods ; Systems Theory ; Theoretical</subject><ispartof>Calculus of variations and partial differential equations, 2017-12, Vol.56 (6), p.1-42, Article 173</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-c8b538c6584d300061d825aa980202eea215fde140b599771a5598d696b28763</citedby><cites>FETCH-LOGICAL-c316t-c8b538c6584d300061d825aa980202eea215fde140b599771a5598d696b28763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00526-017-1265-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00526-017-1265-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Nguyen, Truyen</creatorcontrib><title>Interior Calderón–Zygmund estimates for solutions to general parabolic equations of p-Laplacian type</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>We study general parabolic equations of the form u t = div A ( x , t , u , D u ) + div ( | F | p - 2 F ) + f whose principal part depends on the solution itself. The vector field A is assumed to have small mean oscillation in x , measurable in t , Lipschitz continuous in u , and its growth in Du is like the p -Laplace operator. We establish interior Calderón–Zygmund estimates for locally bounded weak solutions to the equations when p &gt; 2 n / ( n + 2 ) . This is achieved by employing a perturbation method together with developing a two-parameter technique and a new compactness argument. We also make crucial use of the intrinsic geometry method by DiBenedetto (Degenerate parabolic equations, Springer, New York, 1993 ) and the maximal function free approach by Acerbi and Mingione (Duke Math J 136(2):285–320, 2007 ).</description><subject>Analysis</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Perturbation methods</subject><subject>Systems Theory</subject><subject>Theoretical</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kD1OwzAUxy0EEqVwADZLzIZnO3acEVV8VKrE0onFchKnSpXaqZ0M2bgDR-EI3ISTYBQkJqY3vN__ffwQuqZwSwHyuwggmCRAc0KZFGQ6QQuacUZAcXGKFlBkGWFSFufoIsY9ABWKZQu0W7vBhtYHvDJdbcPnh_t6e3-ddofR1djGoT2YwUbcJCL6bhxa7yIePN5ZZ4PpcG-CKX3XVtgeRzO3fYN7sjF9Z6rWODxMvb1EZ43por36rUu0fXzYrp7J5uVpvbrfkIpTOZBKlYKrSgqV1RwAJK0VE8YUChgwaw2joqktzaAURZHn1AhRqFoWsmQql3yJbuaxffDHMZ2v934MLm3UDCQXgjNOE0Vnqgo-xmAb3Yf0Z5g0Bf2jU886ddKpf3TqKWXYnImJdTsb_ib_H_oGdk96bw</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Nguyen, Truyen</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20171201</creationdate><title>Interior Calderón–Zygmund estimates for solutions to general parabolic equations of p-Laplacian type</title><author>Nguyen, Truyen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-c8b538c6584d300061d825aa980202eea215fde140b599771a5598d696b28763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Perturbation methods</topic><topic>Systems Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Truyen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Truyen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interior Calderón–Zygmund estimates for solutions to general parabolic equations of p-Laplacian type</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>56</volume><issue>6</issue><spage>1</spage><epage>42</epage><pages>1-42</pages><artnum>173</artnum><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>We study general parabolic equations of the form u t = div A ( x , t , u , D u ) + div ( | F | p - 2 F ) + f whose principal part depends on the solution itself. The vector field A is assumed to have small mean oscillation in x , measurable in t , Lipschitz continuous in u , and its growth in Du is like the p -Laplace operator. We establish interior Calderón–Zygmund estimates for locally bounded weak solutions to the equations when p &gt; 2 n / ( n + 2 ) . This is achieved by employing a perturbation method together with developing a two-parameter technique and a new compactness argument. We also make crucial use of the intrinsic geometry method by DiBenedetto (Degenerate parabolic equations, Springer, New York, 1993 ) and the maximal function free approach by Acerbi and Mingione (Duke Math J 136(2):285–320, 2007 ).</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00526-017-1265-y</doi><tpages>42</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0944-2669
ispartof Calculus of variations and partial differential equations, 2017-12, Vol.56 (6), p.1-42, Article 173
issn 0944-2669
1432-0835
language eng
recordid cdi_proquest_journals_2063553231
source Springer Nature - Complete Springer Journals
subjects Analysis
Calculus of Variations and Optimal Control
Optimization
Control
Mathematical analysis
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Operators (mathematics)
Perturbation methods
Systems Theory
Theoretical
title Interior Calderón–Zygmund estimates for solutions to general parabolic equations of p-Laplacian type
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A48%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interior%20Calder%C3%B3n%E2%80%93Zygmund%20estimates%20for%20solutions%20to%20general%20parabolic%20equations%20of%20p-Laplacian%20type&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=Nguyen,%20Truyen&rft.date=2017-12-01&rft.volume=56&rft.issue=6&rft.spage=1&rft.epage=42&rft.pages=1-42&rft.artnum=173&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-017-1265-y&rft_dat=%3Cproquest_cross%3E2063553231%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2063553231&rft_id=info:pmid/&rfr_iscdi=true