6He + 6He Clustering of 12Be in a Microscopic Algebraic Approach
The norm kernel of the A=12 system composed of two 6 He clusters, and the L=0 basis functions (in the SU (3) and angular momentum-coupled schemes) are analytically obtained in the Fock-Bargmann space. The norm kernel has a diagonal form in the former basis, but the asymptotic conditions are naturall...
Gespeichert in:
Veröffentlicht in: | Few-body systems 2004-06, Vol.34 (4), p.209-235 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 235 |
---|---|
container_issue | 4 |
container_start_page | 209 |
container_title | Few-body systems |
container_volume | 34 |
creator | Filippov, G. F. Lashko, Yu. A. Korennov, S. V. Katō, K. |
description | The norm kernel of the A=12 system composed of two 6 He clusters, and the L=0 basis functions (in the SU (3) and angular momentum-coupled schemes) are analytically obtained in the Fock-Bargmann space. The norm kernel has a diagonal form in the former basis, but the asymptotic conditions are naturally defined in the latter one. The system is a good illustration for the method of projection of the norm kernel to the basis functions in the presence of SU (3) degeneracy that was proposed by the authors. The coupled-channel problem is considered in the algebraic version of the resonating-group method, with the multiple decay thresholds being properly accounted for. The structure of the ground state of 12 Be obtained in the approximation of zero-range nuclear force is compared with the shell-model predictions. In the continuum part of the spectrum, the S-matrix is constructed, the asymptotic normalization coefficients are deduced and their energy dependence is analyzed. |
doi_str_mv | 10.1007/s00601-003-0020-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_206348316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>682304601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1176-a65cddbca3752263abb02ca8bc3e08e8a66eb8ef97a97200add973b08a0ed44c3</originalsourceid><addsrcrecordid>eNotkM1OwzAQhC0EEqXwANwsrsiwazt2cqNUQJGKuMDZWjtOSVWSYLcH3p5E5bA_h9HM6GPsGuEOAex9BjCAAkCNI0HoEzZDraQoNOIpmwFaK2xl1Dm7yHkLgEWFMGMPZhX5LZ_2cnfI-5jabsP7hqN8jLztOPG3NqQ-h35oA1_sNtEnmr5hSD2Fr0t21tAux6v_O2efz08fy5VYv7-8LhdrERCtEWSKUNc-kLKFlEaR9yADlT6oCGUsyZjoy9hUliorAaiuK6s8lASx1jqoObs5-o6xP4eY927bH1I3RjoJRulSoRlFeBRNjXOKjRtS-03p1yG4iZM7cnIjJzdxclr9AaphWHk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>206348316</pqid></control><display><type>article</type><title>6He + 6He Clustering of 12Be in a Microscopic Algebraic Approach</title><source>Springer Nature - Complete Springer Journals</source><creator>Filippov, G. F. ; Lashko, Yu. A. ; Korennov, S. V. ; Katō, K.</creator><creatorcontrib>Filippov, G. F. ; Lashko, Yu. A. ; Korennov, S. V. ; Katō, K.</creatorcontrib><description>The norm kernel of the A=12 system composed of two 6 He clusters, and the L=0 basis functions (in the SU (3) and angular momentum-coupled schemes) are analytically obtained in the Fock-Bargmann space. The norm kernel has a diagonal form in the former basis, but the asymptotic conditions are naturally defined in the latter one. The system is a good illustration for the method of projection of the norm kernel to the basis functions in the presence of SU (3) degeneracy that was proposed by the authors. The coupled-channel problem is considered in the algebraic version of the resonating-group method, with the multiple decay thresholds being properly accounted for. The structure of the ground state of 12 Be obtained in the approximation of zero-range nuclear force is compared with the shell-model predictions. In the continuum part of the spectrum, the S-matrix is constructed, the asymptotic normalization coefficients are deduced and their energy dependence is analyzed.</description><identifier>ISSN: 0177-7963</identifier><identifier>EISSN: 1432-5411</identifier><identifier>DOI: 10.1007/s00601-003-0020-4</identifier><identifier>CODEN: FBSYEQ</identifier><language>eng</language><publisher>Wien: Springer Nature B.V</publisher><subject>Algebra ; Cluster analysis</subject><ispartof>Few-body systems, 2004-06, Vol.34 (4), p.209-235</ispartof><rights>Copyright Springer-Verlag 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1176-a65cddbca3752263abb02ca8bc3e08e8a66eb8ef97a97200add973b08a0ed44c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Filippov, G. F.</creatorcontrib><creatorcontrib>Lashko, Yu. A.</creatorcontrib><creatorcontrib>Korennov, S. V.</creatorcontrib><creatorcontrib>Katō, K.</creatorcontrib><title>6He + 6He Clustering of 12Be in a Microscopic Algebraic Approach</title><title>Few-body systems</title><description>The norm kernel of the A=12 system composed of two 6 He clusters, and the L=0 basis functions (in the SU (3) and angular momentum-coupled schemes) are analytically obtained in the Fock-Bargmann space. The norm kernel has a diagonal form in the former basis, but the asymptotic conditions are naturally defined in the latter one. The system is a good illustration for the method of projection of the norm kernel to the basis functions in the presence of SU (3) degeneracy that was proposed by the authors. The coupled-channel problem is considered in the algebraic version of the resonating-group method, with the multiple decay thresholds being properly accounted for. The structure of the ground state of 12 Be obtained in the approximation of zero-range nuclear force is compared with the shell-model predictions. In the continuum part of the spectrum, the S-matrix is constructed, the asymptotic normalization coefficients are deduced and their energy dependence is analyzed.</description><subject>Algebra</subject><subject>Cluster analysis</subject><issn>0177-7963</issn><issn>1432-5411</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotkM1OwzAQhC0EEqXwANwsrsiwazt2cqNUQJGKuMDZWjtOSVWSYLcH3p5E5bA_h9HM6GPsGuEOAex9BjCAAkCNI0HoEzZDraQoNOIpmwFaK2xl1Dm7yHkLgEWFMGMPZhX5LZ_2cnfI-5jabsP7hqN8jLztOPG3NqQ-h35oA1_sNtEnmr5hSD2Fr0t21tAux6v_O2efz08fy5VYv7-8LhdrERCtEWSKUNc-kLKFlEaR9yADlT6oCGUsyZjoy9hUliorAaiuK6s8lASx1jqoObs5-o6xP4eY927bH1I3RjoJRulSoRlFeBRNjXOKjRtS-03p1yG4iZM7cnIjJzdxclr9AaphWHk</recordid><startdate>20040628</startdate><enddate>20040628</enddate><creator>Filippov, G. F.</creator><creator>Lashko, Yu. A.</creator><creator>Korennov, S. V.</creator><creator>Katō, K.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20040628</creationdate><title>6He + 6He Clustering of 12Be in a Microscopic Algebraic Approach</title><author>Filippov, G. F. ; Lashko, Yu. A. ; Korennov, S. V. ; Katō, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1176-a65cddbca3752263abb02ca8bc3e08e8a66eb8ef97a97200add973b08a0ed44c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algebra</topic><topic>Cluster analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Filippov, G. F.</creatorcontrib><creatorcontrib>Lashko, Yu. A.</creatorcontrib><creatorcontrib>Korennov, S. V.</creatorcontrib><creatorcontrib>Katō, K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Few-body systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Filippov, G. F.</au><au>Lashko, Yu. A.</au><au>Korennov, S. V.</au><au>Katō, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>6He + 6He Clustering of 12Be in a Microscopic Algebraic Approach</atitle><jtitle>Few-body systems</jtitle><date>2004-06-28</date><risdate>2004</risdate><volume>34</volume><issue>4</issue><spage>209</spage><epage>235</epage><pages>209-235</pages><issn>0177-7963</issn><eissn>1432-5411</eissn><coden>FBSYEQ</coden><abstract>The norm kernel of the A=12 system composed of two 6 He clusters, and the L=0 basis functions (in the SU (3) and angular momentum-coupled schemes) are analytically obtained in the Fock-Bargmann space. The norm kernel has a diagonal form in the former basis, but the asymptotic conditions are naturally defined in the latter one. The system is a good illustration for the method of projection of the norm kernel to the basis functions in the presence of SU (3) degeneracy that was proposed by the authors. The coupled-channel problem is considered in the algebraic version of the resonating-group method, with the multiple decay thresholds being properly accounted for. The structure of the ground state of 12 Be obtained in the approximation of zero-range nuclear force is compared with the shell-model predictions. In the continuum part of the spectrum, the S-matrix is constructed, the asymptotic normalization coefficients are deduced and their energy dependence is analyzed.</abstract><cop>Wien</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00601-003-0020-4</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0177-7963 |
ispartof | Few-body systems, 2004-06, Vol.34 (4), p.209-235 |
issn | 0177-7963 1432-5411 |
language | eng |
recordid | cdi_proquest_journals_206348316 |
source | Springer Nature - Complete Springer Journals |
subjects | Algebra Cluster analysis |
title | 6He + 6He Clustering of 12Be in a Microscopic Algebraic Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T19%3A58%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=6He%20+%206He%20Clustering%20of%2012Be%20in%20a%20Microscopic%20Algebraic%20Approach&rft.jtitle=Few-body%20systems&rft.au=Filippov,%20G.%20F.&rft.date=2004-06-28&rft.volume=34&rft.issue=4&rft.spage=209&rft.epage=235&rft.pages=209-235&rft.issn=0177-7963&rft.eissn=1432-5411&rft.coden=FBSYEQ&rft_id=info:doi/10.1007/s00601-003-0020-4&rft_dat=%3Cproquest_cross%3E682304601%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=206348316&rft_id=info:pmid/&rfr_iscdi=true |