Optimal payment of mortgages
This article provides a borrower's optimal strategies to terminate a mortgage with a fixed interest rate by paying the outstanding balance all at once. The problem is modelled as a free boundary problem for the appropriate analogue of the Black-Scholes pricing equation under the assumption of t...
Gespeichert in:
Veröffentlicht in: | European journal of applied mathematics 2007-06, Vol.18 (3), p.363-388 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 388 |
---|---|
container_issue | 3 |
container_start_page | 363 |
container_title | European journal of applied mathematics |
container_volume | 18 |
creator | XIE, DEJUN CHEN, XINFU CHADAM, JOHN |
description | This article provides a borrower's optimal strategies to terminate a mortgage with a fixed interest rate by paying the outstanding balance all at once. The problem is modelled as a free boundary problem for the appropriate analogue of the Black-Scholes pricing equation under the assumption of the Vasicek model for the short-term rate of investment. Here the free boundary provides the optimal time at which the mortgage contract is to be terminated. A number of integral identities are derived and then used to design efficient numerical codes for computing the free boundary. For numerical simulation, parameters for the Vasicek model are estimated via the method of maximum likelihood estimation using 40 years of data from US government bonds. The asymptotic behaviour of the free boundary for the infinite horizon is fully analysed. Interpolating this infinite horizon behaviour and a known near-expiry behaviour, two simple analytical approximation formulas for the optimal exercise boundary are proposed. Numerical evidence shows that the enhanced version of the approximation formula is amazingly accurate; in general, its relative error is less than 1%, for all time before expiry. |
doi_str_mv | 10.1017/S0956792507006997 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_206331337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0956792507006997</cupid><sourcerecordid>1452108971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-94dabdaa7be94571a6c6ba8e951cfa603d283270e6c8d17f47225e1c0b4281933</originalsourceid><addsrcrecordid>eNp1kE9Lw0AQxRdRsFY_gOCheI_O7L_JHqVoKxZKtZ6XTbIprU0Td1Ow396UFj2Ipzm835v3eIxdI9whIN2_gVGaDFdAANoYOmE9lNokUnJ1ynp7Odnr5-wixhUACiDTYzfTpl1Wbj1o3K7ym3ZQl4OqDu3CLXy8ZGelW0d_dbx99v70OB-Ok8l09Dx8mCS5MNQmRhYuK5yjzBupCJ3OdeZSbxTmpdMgCp4KTuB1nhZIpSTOlcccMslTNEL02e3hbxPqz62PrV3V27DpIi0HLQQKQR2EBygPdYzBl7YJXfOwswh2v4H9s0HnSQ6eZWz914_BhQ-rSZCyejSz43Q-S2cvc_va8eKY4aosLIuF_23yf8o3vKJrIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>206331337</pqid></control><display><type>article</type><title>Optimal payment of mortgages</title><source>Cambridge University Press Journals Complete</source><creator>XIE, DEJUN ; CHEN, XINFU ; CHADAM, JOHN</creator><creatorcontrib>XIE, DEJUN ; CHEN, XINFU ; CHADAM, JOHN</creatorcontrib><description>This article provides a borrower's optimal strategies to terminate a mortgage with a fixed interest rate by paying the outstanding balance all at once. The problem is modelled as a free boundary problem for the appropriate analogue of the Black-Scholes pricing equation under the assumption of the Vasicek model for the short-term rate of investment. Here the free boundary provides the optimal time at which the mortgage contract is to be terminated. A number of integral identities are derived and then used to design efficient numerical codes for computing the free boundary. For numerical simulation, parameters for the Vasicek model are estimated via the method of maximum likelihood estimation using 40 years of data from US government bonds. The asymptotic behaviour of the free boundary for the infinite horizon is fully analysed. Interpolating this infinite horizon behaviour and a known near-expiry behaviour, two simple analytical approximation formulas for the optimal exercise boundary are proposed. Numerical evidence shows that the enhanced version of the approximation formula is amazingly accurate; in general, its relative error is less than 1%, for all time before expiry.</description><identifier>ISSN: 0956-7925</identifier><identifier>EISSN: 1469-4425</identifier><identifier>DOI: 10.1017/S0956792507006997</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Applied mathematics ; Mathematical analysis ; Mathematical problems ; Mortgages ; Optimization</subject><ispartof>European journal of applied mathematics, 2007-06, Vol.18 (3), p.363-388</ispartof><rights>Copyright © Cambridge University Press 2007</rights><rights>Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-94dabdaa7be94571a6c6ba8e951cfa603d283270e6c8d17f47225e1c0b4281933</citedby><cites>FETCH-LOGICAL-c397t-94dabdaa7be94571a6c6ba8e951cfa603d283270e6c8d17f47225e1c0b4281933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0956792507006997/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>XIE, DEJUN</creatorcontrib><creatorcontrib>CHEN, XINFU</creatorcontrib><creatorcontrib>CHADAM, JOHN</creatorcontrib><title>Optimal payment of mortgages</title><title>European journal of applied mathematics</title><addtitle>Eur. J. Appl. Math</addtitle><description>This article provides a borrower's optimal strategies to terminate a mortgage with a fixed interest rate by paying the outstanding balance all at once. The problem is modelled as a free boundary problem for the appropriate analogue of the Black-Scholes pricing equation under the assumption of the Vasicek model for the short-term rate of investment. Here the free boundary provides the optimal time at which the mortgage contract is to be terminated. A number of integral identities are derived and then used to design efficient numerical codes for computing the free boundary. For numerical simulation, parameters for the Vasicek model are estimated via the method of maximum likelihood estimation using 40 years of data from US government bonds. The asymptotic behaviour of the free boundary for the infinite horizon is fully analysed. Interpolating this infinite horizon behaviour and a known near-expiry behaviour, two simple analytical approximation formulas for the optimal exercise boundary are proposed. Numerical evidence shows that the enhanced version of the approximation formula is amazingly accurate; in general, its relative error is less than 1%, for all time before expiry.</description><subject>Applied mathematics</subject><subject>Mathematical analysis</subject><subject>Mathematical problems</subject><subject>Mortgages</subject><subject>Optimization</subject><issn>0956-7925</issn><issn>1469-4425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE9Lw0AQxRdRsFY_gOCheI_O7L_JHqVoKxZKtZ6XTbIprU0Td1Ow396UFj2Ipzm835v3eIxdI9whIN2_gVGaDFdAANoYOmE9lNokUnJ1ynp7Odnr5-wixhUACiDTYzfTpl1Wbj1o3K7ym3ZQl4OqDu3CLXy8ZGelW0d_dbx99v70OB-Ok8l09Dx8mCS5MNQmRhYuK5yjzBupCJ3OdeZSbxTmpdMgCp4KTuB1nhZIpSTOlcccMslTNEL02e3hbxPqz62PrV3V27DpIi0HLQQKQR2EBygPdYzBl7YJXfOwswh2v4H9s0HnSQ6eZWz914_BhQ-rSZCyejSz43Q-S2cvc_va8eKY4aosLIuF_23yf8o3vKJrIw</recordid><startdate>20070601</startdate><enddate>20070601</enddate><creator>XIE, DEJUN</creator><creator>CHEN, XINFU</creator><creator>CHADAM, JOHN</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20070601</creationdate><title>Optimal payment of mortgages</title><author>XIE, DEJUN ; CHEN, XINFU ; CHADAM, JOHN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-94dabdaa7be94571a6c6ba8e951cfa603d283270e6c8d17f47225e1c0b4281933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied mathematics</topic><topic>Mathematical analysis</topic><topic>Mathematical problems</topic><topic>Mortgages</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>XIE, DEJUN</creatorcontrib><creatorcontrib>CHEN, XINFU</creatorcontrib><creatorcontrib>CHADAM, JOHN</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>European journal of applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>XIE, DEJUN</au><au>CHEN, XINFU</au><au>CHADAM, JOHN</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal payment of mortgages</atitle><jtitle>European journal of applied mathematics</jtitle><addtitle>Eur. J. Appl. Math</addtitle><date>2007-06-01</date><risdate>2007</risdate><volume>18</volume><issue>3</issue><spage>363</spage><epage>388</epage><pages>363-388</pages><issn>0956-7925</issn><eissn>1469-4425</eissn><abstract>This article provides a borrower's optimal strategies to terminate a mortgage with a fixed interest rate by paying the outstanding balance all at once. The problem is modelled as a free boundary problem for the appropriate analogue of the Black-Scholes pricing equation under the assumption of the Vasicek model for the short-term rate of investment. Here the free boundary provides the optimal time at which the mortgage contract is to be terminated. A number of integral identities are derived and then used to design efficient numerical codes for computing the free boundary. For numerical simulation, parameters for the Vasicek model are estimated via the method of maximum likelihood estimation using 40 years of data from US government bonds. The asymptotic behaviour of the free boundary for the infinite horizon is fully analysed. Interpolating this infinite horizon behaviour and a known near-expiry behaviour, two simple analytical approximation formulas for the optimal exercise boundary are proposed. Numerical evidence shows that the enhanced version of the approximation formula is amazingly accurate; in general, its relative error is less than 1%, for all time before expiry.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0956792507006997</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0956-7925 |
ispartof | European journal of applied mathematics, 2007-06, Vol.18 (3), p.363-388 |
issn | 0956-7925 1469-4425 |
language | eng |
recordid | cdi_proquest_journals_206331337 |
source | Cambridge University Press Journals Complete |
subjects | Applied mathematics Mathematical analysis Mathematical problems Mortgages Optimization |
title | Optimal payment of mortgages |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A25%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20payment%20of%20mortgages&rft.jtitle=European%20journal%20of%20applied%20mathematics&rft.au=XIE,%20DEJUN&rft.date=2007-06-01&rft.volume=18&rft.issue=3&rft.spage=363&rft.epage=388&rft.pages=363-388&rft.issn=0956-7925&rft.eissn=1469-4425&rft_id=info:doi/10.1017/S0956792507006997&rft_dat=%3Cproquest_cross%3E1452108971%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=206331337&rft_id=info:pmid/&rft_cupid=10_1017_S0956792507006997&rfr_iscdi=true |