Multiple solutions for Neumann systems in an Orlicz-Sobolev space setting

In this paper, the authors improve some results on the existence of at least three weak solutions for non-homogeneous systems. The proof of the main result relies on a recent variational principle due to Ricceri.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical notes (Miskolci Egyetem (Hungary)) 2017, Vol.18 (1), p.31-45
Hauptverfasser: Afrouzi, Ghasem A., Graef, John R., Shokooh, Saeid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 45
container_issue 1
container_start_page 31
container_title Mathematical notes (Miskolci Egyetem (Hungary))
container_volume 18
creator Afrouzi, Ghasem A.
Graef, John R.
Shokooh, Saeid
description In this paper, the authors improve some results on the existence of at least three weak solutions for non-homogeneous systems. The proof of the main result relies on a recent variational principle due to Ricceri.
doi_str_mv 10.18514/MMN.2017.1906
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2062653272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2062653272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-460f19464d5524d40579c6d0f95c6c9ef93bbc7b9a3ea9e8bb4a9cc9c4f80ec03</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EElXplbMlzgl-Oz6iikelpj0AZ8txbZQqtYOdIJVfT0oRe5k9zOyOPgBuMSpxxTG7r-tNSRCWJVZIXIAZlpUsCMP08n9H_Bosct6jaTgTkqkZWNVjN7R952CO3Ti0MWToY4IbNx5MCDAf8-AOGbYBmgC3qWvtd_Eam9i5L5h7Y6egG4Y2fNyAK2-67BZ_OgfvT49vy5divX1eLR_WhaVIDgUTyGPFBNtxTthuKiWVFTvkFbfCKucVbRorG2WoM8pVTcOMslZZ5ivkLKJzcHe-26f4Obo86H0cU5heaoIEEZwSSSZXeXbZFHNOzus-tQeTjhoj_UtMT8T0iZg-EaM_m31eag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2062653272</pqid></control><display><type>article</type><title>Multiple solutions for Neumann systems in an Orlicz-Sobolev space setting</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Afrouzi, Ghasem A. ; Graef, John R. ; Shokooh, Saeid</creator><creatorcontrib>Afrouzi, Ghasem A. ; Graef, John R. ; Shokooh, Saeid</creatorcontrib><description>In this paper, the authors improve some results on the existence of at least three weak solutions for non-homogeneous systems. The proof of the main result relies on a recent variational principle due to Ricceri.</description><identifier>ISSN: 1787-2405</identifier><identifier>EISSN: 1787-2413</identifier><identifier>DOI: 10.18514/MMN.2017.1906</identifier><language>eng</language><publisher>Miskolc: University of Miskolc</publisher><subject>Sobolev space</subject><ispartof>Mathematical notes (Miskolci Egyetem (Hungary)), 2017, Vol.18 (1), p.31-45</ispartof><rights>Copyright University of Miskolc 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-460f19464d5524d40579c6d0f95c6c9ef93bbc7b9a3ea9e8bb4a9cc9c4f80ec03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Afrouzi, Ghasem A.</creatorcontrib><creatorcontrib>Graef, John R.</creatorcontrib><creatorcontrib>Shokooh, Saeid</creatorcontrib><title>Multiple solutions for Neumann systems in an Orlicz-Sobolev space setting</title><title>Mathematical notes (Miskolci Egyetem (Hungary))</title><description>In this paper, the authors improve some results on the existence of at least three weak solutions for non-homogeneous systems. The proof of the main result relies on a recent variational principle due to Ricceri.</description><subject>Sobolev space</subject><issn>1787-2405</issn><issn>1787-2413</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNo9kEtPwzAQhC0EElXplbMlzgl-Oz6iikelpj0AZ8txbZQqtYOdIJVfT0oRe5k9zOyOPgBuMSpxxTG7r-tNSRCWJVZIXIAZlpUsCMP08n9H_Bosct6jaTgTkqkZWNVjN7R952CO3Ti0MWToY4IbNx5MCDAf8-AOGbYBmgC3qWvtd_Eam9i5L5h7Y6egG4Y2fNyAK2-67BZ_OgfvT49vy5divX1eLR_WhaVIDgUTyGPFBNtxTthuKiWVFTvkFbfCKucVbRorG2WoM8pVTcOMslZZ5ivkLKJzcHe-26f4Obo86H0cU5heaoIEEZwSSSZXeXbZFHNOzus-tQeTjhoj_UtMT8T0iZg-EaM_m31eag</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Afrouzi, Ghasem A.</creator><creator>Graef, John R.</creator><creator>Shokooh, Saeid</creator><general>University of Miskolc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>2017</creationdate><title>Multiple solutions for Neumann systems in an Orlicz-Sobolev space setting</title><author>Afrouzi, Ghasem A. ; Graef, John R. ; Shokooh, Saeid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-460f19464d5524d40579c6d0f95c6c9ef93bbc7b9a3ea9e8bb4a9cc9c4f80ec03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Sobolev space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Afrouzi, Ghasem A.</creatorcontrib><creatorcontrib>Graef, John R.</creatorcontrib><creatorcontrib>Shokooh, Saeid</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical notes (Miskolci Egyetem (Hungary))</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Afrouzi, Ghasem A.</au><au>Graef, John R.</au><au>Shokooh, Saeid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple solutions for Neumann systems in an Orlicz-Sobolev space setting</atitle><jtitle>Mathematical notes (Miskolci Egyetem (Hungary))</jtitle><date>2017</date><risdate>2017</risdate><volume>18</volume><issue>1</issue><spage>31</spage><epage>45</epage><pages>31-45</pages><issn>1787-2405</issn><eissn>1787-2413</eissn><abstract>In this paper, the authors improve some results on the existence of at least three weak solutions for non-homogeneous systems. The proof of the main result relies on a recent variational principle due to Ricceri.</abstract><cop>Miskolc</cop><pub>University of Miskolc</pub><doi>10.18514/MMN.2017.1906</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1787-2405
ispartof Mathematical notes (Miskolci Egyetem (Hungary)), 2017, Vol.18 (1), p.31-45
issn 1787-2405
1787-2413
language eng
recordid cdi_proquest_journals_2062653272
source EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Sobolev space
title Multiple solutions for Neumann systems in an Orlicz-Sobolev space setting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A52%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20solutions%20for%20Neumann%20systems%20in%20an%20Orlicz-Sobolev%20space%20setting&rft.jtitle=Mathematical%20notes%20(Miskolci%20Egyetem%20(Hungary))&rft.au=Afrouzi,%20Ghasem%20A.&rft.date=2017&rft.volume=18&rft.issue=1&rft.spage=31&rft.epage=45&rft.pages=31-45&rft.issn=1787-2405&rft.eissn=1787-2413&rft_id=info:doi/10.18514/MMN.2017.1906&rft_dat=%3Cproquest_cross%3E2062653272%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2062653272&rft_id=info:pmid/&rfr_iscdi=true