Multiple solutions for Neumann systems in an Orlicz-Sobolev space setting
In this paper, the authors improve some results on the existence of at least three weak solutions for non-homogeneous systems. The proof of the main result relies on a recent variational principle due to Ricceri.
Gespeichert in:
Veröffentlicht in: | Mathematical notes (Miskolci Egyetem (Hungary)) 2017, Vol.18 (1), p.31-45 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 45 |
---|---|
container_issue | 1 |
container_start_page | 31 |
container_title | Mathematical notes (Miskolci Egyetem (Hungary)) |
container_volume | 18 |
creator | Afrouzi, Ghasem A. Graef, John R. Shokooh, Saeid |
description | In this paper, the authors improve some results on the existence of at least three weak solutions for non-homogeneous systems. The proof of the main result relies on a recent variational principle due to Ricceri. |
doi_str_mv | 10.18514/MMN.2017.1906 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2062653272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2062653272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-460f19464d5524d40579c6d0f95c6c9ef93bbc7b9a3ea9e8bb4a9cc9c4f80ec03</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EElXplbMlzgl-Oz6iikelpj0AZ8txbZQqtYOdIJVfT0oRe5k9zOyOPgBuMSpxxTG7r-tNSRCWJVZIXIAZlpUsCMP08n9H_Bosct6jaTgTkqkZWNVjN7R952CO3Ti0MWToY4IbNx5MCDAf8-AOGbYBmgC3qWvtd_Eam9i5L5h7Y6egG4Y2fNyAK2-67BZ_OgfvT49vy5divX1eLR_WhaVIDgUTyGPFBNtxTthuKiWVFTvkFbfCKucVbRorG2WoM8pVTcOMslZZ5ivkLKJzcHe-26f4Obo86H0cU5heaoIEEZwSSSZXeXbZFHNOzus-tQeTjhoj_UtMT8T0iZg-EaM_m31eag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2062653272</pqid></control><display><type>article</type><title>Multiple solutions for Neumann systems in an Orlicz-Sobolev space setting</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Afrouzi, Ghasem A. ; Graef, John R. ; Shokooh, Saeid</creator><creatorcontrib>Afrouzi, Ghasem A. ; Graef, John R. ; Shokooh, Saeid</creatorcontrib><description>In this paper, the authors improve some results on the existence of at least three weak solutions for non-homogeneous systems. The proof of the main result relies on a recent variational principle due to Ricceri.</description><identifier>ISSN: 1787-2405</identifier><identifier>EISSN: 1787-2413</identifier><identifier>DOI: 10.18514/MMN.2017.1906</identifier><language>eng</language><publisher>Miskolc: University of Miskolc</publisher><subject>Sobolev space</subject><ispartof>Mathematical notes (Miskolci Egyetem (Hungary)), 2017, Vol.18 (1), p.31-45</ispartof><rights>Copyright University of Miskolc 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-460f19464d5524d40579c6d0f95c6c9ef93bbc7b9a3ea9e8bb4a9cc9c4f80ec03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Afrouzi, Ghasem A.</creatorcontrib><creatorcontrib>Graef, John R.</creatorcontrib><creatorcontrib>Shokooh, Saeid</creatorcontrib><title>Multiple solutions for Neumann systems in an Orlicz-Sobolev space setting</title><title>Mathematical notes (Miskolci Egyetem (Hungary))</title><description>In this paper, the authors improve some results on the existence of at least three weak solutions for non-homogeneous systems. The proof of the main result relies on a recent variational principle due to Ricceri.</description><subject>Sobolev space</subject><issn>1787-2405</issn><issn>1787-2413</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNo9kEtPwzAQhC0EElXplbMlzgl-Oz6iikelpj0AZ8txbZQqtYOdIJVfT0oRe5k9zOyOPgBuMSpxxTG7r-tNSRCWJVZIXIAZlpUsCMP08n9H_Bosct6jaTgTkqkZWNVjN7R952CO3Ti0MWToY4IbNx5MCDAf8-AOGbYBmgC3qWvtd_Eam9i5L5h7Y6egG4Y2fNyAK2-67BZ_OgfvT49vy5divX1eLR_WhaVIDgUTyGPFBNtxTthuKiWVFTvkFbfCKucVbRorG2WoM8pVTcOMslZZ5ivkLKJzcHe-26f4Obo86H0cU5heaoIEEZwSSSZXeXbZFHNOzus-tQeTjhoj_UtMT8T0iZg-EaM_m31eag</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Afrouzi, Ghasem A.</creator><creator>Graef, John R.</creator><creator>Shokooh, Saeid</creator><general>University of Miskolc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>2017</creationdate><title>Multiple solutions for Neumann systems in an Orlicz-Sobolev space setting</title><author>Afrouzi, Ghasem A. ; Graef, John R. ; Shokooh, Saeid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-460f19464d5524d40579c6d0f95c6c9ef93bbc7b9a3ea9e8bb4a9cc9c4f80ec03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Sobolev space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Afrouzi, Ghasem A.</creatorcontrib><creatorcontrib>Graef, John R.</creatorcontrib><creatorcontrib>Shokooh, Saeid</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical notes (Miskolci Egyetem (Hungary))</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Afrouzi, Ghasem A.</au><au>Graef, John R.</au><au>Shokooh, Saeid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple solutions for Neumann systems in an Orlicz-Sobolev space setting</atitle><jtitle>Mathematical notes (Miskolci Egyetem (Hungary))</jtitle><date>2017</date><risdate>2017</risdate><volume>18</volume><issue>1</issue><spage>31</spage><epage>45</epage><pages>31-45</pages><issn>1787-2405</issn><eissn>1787-2413</eissn><abstract>In this paper, the authors improve some results on the existence of at least three weak solutions for non-homogeneous systems. The proof of the main result relies on a recent variational principle due to Ricceri.</abstract><cop>Miskolc</cop><pub>University of Miskolc</pub><doi>10.18514/MMN.2017.1906</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1787-2405 |
ispartof | Mathematical notes (Miskolci Egyetem (Hungary)), 2017, Vol.18 (1), p.31-45 |
issn | 1787-2405 1787-2413 |
language | eng |
recordid | cdi_proquest_journals_2062653272 |
source | EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Sobolev space |
title | Multiple solutions for Neumann systems in an Orlicz-Sobolev space setting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A52%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20solutions%20for%20Neumann%20systems%20in%20an%20Orlicz-Sobolev%20space%20setting&rft.jtitle=Mathematical%20notes%20(Miskolci%20Egyetem%20(Hungary))&rft.au=Afrouzi,%20Ghasem%20A.&rft.date=2017&rft.volume=18&rft.issue=1&rft.spage=31&rft.epage=45&rft.pages=31-45&rft.issn=1787-2405&rft.eissn=1787-2413&rft_id=info:doi/10.18514/MMN.2017.1906&rft_dat=%3Cproquest_cross%3E2062653272%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2062653272&rft_id=info:pmid/&rfr_iscdi=true |