HMM-based generation of laughter facial expression

[Display omitted] This paper proposes a model for visual laughter generation by the means of speaker-dependent training of Hidden Markov Models (HMMs). It is composed of the following parts: 1) facial and 2) and head motions are modeled with separate HMMs while 3) eye-blink are added as a post-proce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Speech communication 2018-04, Vol.98, p.28-41
Hauptverfasser: Çakmak, Hüseyin, Dutoit, Thierry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 41
container_issue
container_start_page 28
container_title Speech communication
container_volume 98
creator Çakmak, Hüseyin
Dutoit, Thierry
description [Display omitted] This paper proposes a model for visual laughter generation by the means of speaker-dependent training of Hidden Markov Models (HMMs). It is composed of the following parts: 1) facial and 2) and head motions are modeled with separate HMMs while 3) eye-blink are added as a post-processing step on the generated eyelid trajectories. The models are trained on a database of facial expressions recorded on one male subject watching humorous videos. A commercially available marker-based motion capture system was used to record the visual data. A preliminary study has shown that modeling head motion with the same transcriptions as for facial deformation is not the best choice due to the rigidness of the resulting head motion. Finally, the generated facial laughter trajectories are used to animate a 3D face model and the corresponding animation is rendered in a video. An online perception MOS test is conducted to assess the improvement compared to the previous method and to compare with the perception of ground truth trajectories. Results show that the new approach significantly outperforms the previous one.
doi_str_mv 10.1016/j.specom.2017.12.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2062628678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167639317300110</els_id><sourcerecordid>2062628678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-f404987d5e3073d7a2b812f53a6106c7fb0c93483ff4152c6e4eb91b47dc66af3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwDxgiMSf4q7azIKEKWqRWLDBbjnMujto42CmCf4-rMDPdcM_7nu5B6JbgimAi7rsqDWDDoaKYyIrQCmNxhmZESVpKoug5mmVMloLV7BJdpdRhjLlSdIboerstG5OgLXbQQzSjD30RXLE3x93HCLFwxnqzL-B7iJBS3l6jC2f2CW7-5hy9Pz-9Ldfl5nX1snzclJYxPpaOY14r2S6AYclaaWijCHULZgTBwkrXYFszrphznCyoFcChqUnDZWuFMI7N0d3UO8TweYQ06i4cY59PaooFFVQJqTLFJ8rGkFIEp4foDyb-aIL1yY7u9GRHn-xoQnW2k2MPUwzyB18eok7WQ2-h9RHsqNvg_y_4Bce1bj8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2062628678</pqid></control><display><type>article</type><title>HMM-based generation of laughter facial expression</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Çakmak, Hüseyin ; Dutoit, Thierry</creator><creatorcontrib>Çakmak, Hüseyin ; Dutoit, Thierry</creatorcontrib><description>[Display omitted] This paper proposes a model for visual laughter generation by the means of speaker-dependent training of Hidden Markov Models (HMMs). It is composed of the following parts: 1) facial and 2) and head motions are modeled with separate HMMs while 3) eye-blink are added as a post-processing step on the generated eyelid trajectories. The models are trained on a database of facial expressions recorded on one male subject watching humorous videos. A commercially available marker-based motion capture system was used to record the visual data. A preliminary study has shown that modeling head motion with the same transcriptions as for facial deformation is not the best choice due to the rigidness of the resulting head motion. Finally, the generated facial laughter trajectories are used to animate a 3D face model and the corresponding animation is rendered in a video. An online perception MOS test is conducted to assess the improvement compared to the previous method and to compare with the perception of ground truth trajectories. Results show that the new approach significantly outperforms the previous one.</description><identifier>ISSN: 0167-6393</identifier><identifier>EISSN: 1872-7182</identifier><identifier>DOI: 10.1016/j.specom.2017.12.006</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Animation ; Deformation ; Emotions ; Face (Body) ; Facial expression ; Facial expressions ; Generation ; Ground truth ; Head movement ; Humor ; Laughter ; Markov analysis ; Markov chains ; Motion ; Motion capture ; Motion perception ; Post-production processing ; Three dimensional models ; Trajectories ; Truth ; Visual ; Visual perception</subject><ispartof>Speech communication, 2018-04, Vol.98, p.28-41</ispartof><rights>2017</rights><rights>Copyright Elsevier Science Ltd. Apr 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-f404987d5e3073d7a2b812f53a6106c7fb0c93483ff4152c6e4eb91b47dc66af3</citedby><cites>FETCH-LOGICAL-c334t-f404987d5e3073d7a2b812f53a6106c7fb0c93483ff4152c6e4eb91b47dc66af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.specom.2017.12.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Çakmak, Hüseyin</creatorcontrib><creatorcontrib>Dutoit, Thierry</creatorcontrib><title>HMM-based generation of laughter facial expression</title><title>Speech communication</title><description>[Display omitted] This paper proposes a model for visual laughter generation by the means of speaker-dependent training of Hidden Markov Models (HMMs). It is composed of the following parts: 1) facial and 2) and head motions are modeled with separate HMMs while 3) eye-blink are added as a post-processing step on the generated eyelid trajectories. The models are trained on a database of facial expressions recorded on one male subject watching humorous videos. A commercially available marker-based motion capture system was used to record the visual data. A preliminary study has shown that modeling head motion with the same transcriptions as for facial deformation is not the best choice due to the rigidness of the resulting head motion. Finally, the generated facial laughter trajectories are used to animate a 3D face model and the corresponding animation is rendered in a video. An online perception MOS test is conducted to assess the improvement compared to the previous method and to compare with the perception of ground truth trajectories. Results show that the new approach significantly outperforms the previous one.</description><subject>Animation</subject><subject>Deformation</subject><subject>Emotions</subject><subject>Face (Body)</subject><subject>Facial expression</subject><subject>Facial expressions</subject><subject>Generation</subject><subject>Ground truth</subject><subject>Head movement</subject><subject>Humor</subject><subject>Laughter</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Motion</subject><subject>Motion capture</subject><subject>Motion perception</subject><subject>Post-production processing</subject><subject>Three dimensional models</subject><subject>Trajectories</subject><subject>Truth</subject><subject>Visual</subject><subject>Visual perception</subject><issn>0167-6393</issn><issn>1872-7182</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwDxgiMSf4q7azIKEKWqRWLDBbjnMujto42CmCf4-rMDPdcM_7nu5B6JbgimAi7rsqDWDDoaKYyIrQCmNxhmZESVpKoug5mmVMloLV7BJdpdRhjLlSdIboerstG5OgLXbQQzSjD30RXLE3x93HCLFwxnqzL-B7iJBS3l6jC2f2CW7-5hy9Pz-9Ldfl5nX1snzclJYxPpaOY14r2S6AYclaaWijCHULZgTBwkrXYFszrphznCyoFcChqUnDZWuFMI7N0d3UO8TweYQ06i4cY59PaooFFVQJqTLFJ8rGkFIEp4foDyb-aIL1yY7u9GRHn-xoQnW2k2MPUwzyB18eok7WQ2-h9RHsqNvg_y_4Bce1bj8</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Çakmak, Hüseyin</creator><creator>Dutoit, Thierry</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7T9</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201804</creationdate><title>HMM-based generation of laughter facial expression</title><author>Çakmak, Hüseyin ; Dutoit, Thierry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-f404987d5e3073d7a2b812f53a6106c7fb0c93483ff4152c6e4eb91b47dc66af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animation</topic><topic>Deformation</topic><topic>Emotions</topic><topic>Face (Body)</topic><topic>Facial expression</topic><topic>Facial expressions</topic><topic>Generation</topic><topic>Ground truth</topic><topic>Head movement</topic><topic>Humor</topic><topic>Laughter</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Motion</topic><topic>Motion capture</topic><topic>Motion perception</topic><topic>Post-production processing</topic><topic>Three dimensional models</topic><topic>Trajectories</topic><topic>Truth</topic><topic>Visual</topic><topic>Visual perception</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Çakmak, Hüseyin</creatorcontrib><creatorcontrib>Dutoit, Thierry</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Speech communication</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Çakmak, Hüseyin</au><au>Dutoit, Thierry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HMM-based generation of laughter facial expression</atitle><jtitle>Speech communication</jtitle><date>2018-04</date><risdate>2018</risdate><volume>98</volume><spage>28</spage><epage>41</epage><pages>28-41</pages><issn>0167-6393</issn><eissn>1872-7182</eissn><abstract>[Display omitted] This paper proposes a model for visual laughter generation by the means of speaker-dependent training of Hidden Markov Models (HMMs). It is composed of the following parts: 1) facial and 2) and head motions are modeled with separate HMMs while 3) eye-blink are added as a post-processing step on the generated eyelid trajectories. The models are trained on a database of facial expressions recorded on one male subject watching humorous videos. A commercially available marker-based motion capture system was used to record the visual data. A preliminary study has shown that modeling head motion with the same transcriptions as for facial deformation is not the best choice due to the rigidness of the resulting head motion. Finally, the generated facial laughter trajectories are used to animate a 3D face model and the corresponding animation is rendered in a video. An online perception MOS test is conducted to assess the improvement compared to the previous method and to compare with the perception of ground truth trajectories. Results show that the new approach significantly outperforms the previous one.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.specom.2017.12.006</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-6393
ispartof Speech communication, 2018-04, Vol.98, p.28-41
issn 0167-6393
1872-7182
language eng
recordid cdi_proquest_journals_2062628678
source Elsevier ScienceDirect Journals Complete
subjects Animation
Deformation
Emotions
Face (Body)
Facial expression
Facial expressions
Generation
Ground truth
Head movement
Humor
Laughter
Markov analysis
Markov chains
Motion
Motion capture
Motion perception
Post-production processing
Three dimensional models
Trajectories
Truth
Visual
Visual perception
title HMM-based generation of laughter facial expression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A42%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HMM-based%20generation%20of%20laughter%20facial%20expression&rft.jtitle=Speech%20communication&rft.au=%C3%87akmak,%20H%C3%BCseyin&rft.date=2018-04&rft.volume=98&rft.spage=28&rft.epage=41&rft.pages=28-41&rft.issn=0167-6393&rft.eissn=1872-7182&rft_id=info:doi/10.1016/j.specom.2017.12.006&rft_dat=%3Cproquest_cross%3E2062628678%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2062628678&rft_id=info:pmid/&rft_els_id=S0167639317300110&rfr_iscdi=true