Approximations and Mittag-Leffler conditions the applications
A classic result by Bass says that the class of all projective modules is covering if and only if it is closed under direct limits. Enochs extended the if-part by showing that every class of modules C , which is precovering and closed under direct limits, is covering, and asked whether the converse...
Gespeichert in:
Veröffentlicht in: | Israel journal of mathematics 2018-06, Vol.226 (2), p.757-780 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 780 |
---|---|
container_issue | 2 |
container_start_page | 757 |
container_title | Israel journal of mathematics |
container_volume | 226 |
creator | Angeleri Hügel, Lidia Śaroch, Jan Trlifaj, Jan |
description | A classic result by Bass says that the class of all projective modules is covering if and only if it is closed under direct limits. Enochs extended the if-part by showing that every class of modules
C
, which is precovering and closed under direct limits, is covering, and asked whether the converse is true. We employ the tools developed in [18] and give a positive answer when
C
=
A
, or
C
is the class of all locally
A
≤
ω
-free modules, where
A
is any class of modules fitting in a cotorsion pair (
A
,
B
) such that
B
is closed under direct limits. This setting includes all cotorsion pairs and classes of locally free modules arising in (infinite-dimensional) tilting theory. We also consider two particular applications: to pure-semisimple rings, and Artin algebras of infinite representation type. |
doi_str_mv | 10.1007/s11856-018-1711-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2062201661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2062201661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-5dd2b415c3a9a0905f03e9a6c91b4237bf8258806b7fd4b965005b3d9f3877f43</originalsourceid><addsrcrecordid>eNp1kDtPxDAQhC0EEuHgB9BFojbs2vEjBcXpxEsKooHachL7yCkkwc5J8O_xKUhUVFvszOzsR8glwjUCqJuIqIWkgJqiQqT8iGQopKBaIB6TDIAhZajYKTmLcQcguEKekdv1NIXxq_uwczcOMbdDmz9382y3tHLe9y7kzTi03bKd311up6nvmkV-Tk687aO7-J0r8nZ_97p5pNXLw9NmXdGGo5ypaFtWFygabksLJQgP3JVWNiXWBeOq9poJrUHWyrdFXUqR-tW8LT3XSvmCr8jVkpu6fu5dnM1u3IchnTQMJGOAUmJS4aJqwhhjcN5MIT0Wvg2COVAyCyWTKJkDJcOThy2emLTD1oW_5P9NP1NBaSI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2062201661</pqid></control><display><type>article</type><title>Approximations and Mittag-Leffler conditions the applications</title><source>SpringerLink Journals - AutoHoldings</source><creator>Angeleri Hügel, Lidia ; Śaroch, Jan ; Trlifaj, Jan</creator><creatorcontrib>Angeleri Hügel, Lidia ; Śaroch, Jan ; Trlifaj, Jan</creatorcontrib><description>A classic result by Bass says that the class of all projective modules is covering if and only if it is closed under direct limits. Enochs extended the if-part by showing that every class of modules
C
, which is precovering and closed under direct limits, is covering, and asked whether the converse is true. We employ the tools developed in [18] and give a positive answer when
C
=
A
, or
C
is the class of all locally
A
≤
ω
-free modules, where
A
is any class of modules fitting in a cotorsion pair (
A
,
B
) such that
B
is closed under direct limits. This setting includes all cotorsion pairs and classes of locally free modules arising in (infinite-dimensional) tilting theory. We also consider two particular applications: to pure-semisimple rings, and Artin algebras of infinite representation type.</description><identifier>ISSN: 0021-2172</identifier><identifier>EISSN: 1565-8511</identifier><identifier>DOI: 10.1007/s11856-018-1711-3</identifier><language>eng</language><publisher>Jerusalem: The Hebrew University Magnes Press</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Bass ; Group Theory and Generalizations ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Modules ; Rings (mathematics) ; Theoretical</subject><ispartof>Israel journal of mathematics, 2018-06, Vol.226 (2), p.757-780</ispartof><rights>Hebrew University of Jerusalem 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-5dd2b415c3a9a0905f03e9a6c91b4237bf8258806b7fd4b965005b3d9f3877f43</citedby><cites>FETCH-LOGICAL-c316t-5dd2b415c3a9a0905f03e9a6c91b4237bf8258806b7fd4b965005b3d9f3877f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11856-018-1711-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11856-018-1711-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Angeleri Hügel, Lidia</creatorcontrib><creatorcontrib>Śaroch, Jan</creatorcontrib><creatorcontrib>Trlifaj, Jan</creatorcontrib><title>Approximations and Mittag-Leffler conditions the applications</title><title>Israel journal of mathematics</title><addtitle>Isr. J. Math</addtitle><description>A classic result by Bass says that the class of all projective modules is covering if and only if it is closed under direct limits. Enochs extended the if-part by showing that every class of modules
C
, which is precovering and closed under direct limits, is covering, and asked whether the converse is true. We employ the tools developed in [18] and give a positive answer when
C
=
A
, or
C
is the class of all locally
A
≤
ω
-free modules, where
A
is any class of modules fitting in a cotorsion pair (
A
,
B
) such that
B
is closed under direct limits. This setting includes all cotorsion pairs and classes of locally free modules arising in (infinite-dimensional) tilting theory. We also consider two particular applications: to pure-semisimple rings, and Artin algebras of infinite representation type.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Bass</subject><subject>Group Theory and Generalizations</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Modules</subject><subject>Rings (mathematics)</subject><subject>Theoretical</subject><issn>0021-2172</issn><issn>1565-8511</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPxDAQhC0EEuHgB9BFojbs2vEjBcXpxEsKooHachL7yCkkwc5J8O_xKUhUVFvszOzsR8glwjUCqJuIqIWkgJqiQqT8iGQopKBaIB6TDIAhZajYKTmLcQcguEKekdv1NIXxq_uwczcOMbdDmz9382y3tHLe9y7kzTi03bKd311up6nvmkV-Tk687aO7-J0r8nZ_97p5pNXLw9NmXdGGo5ypaFtWFygabksLJQgP3JVWNiXWBeOq9poJrUHWyrdFXUqR-tW8LT3XSvmCr8jVkpu6fu5dnM1u3IchnTQMJGOAUmJS4aJqwhhjcN5MIT0Wvg2COVAyCyWTKJkDJcOThy2emLTD1oW_5P9NP1NBaSI</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Angeleri Hügel, Lidia</creator><creator>Śaroch, Jan</creator><creator>Trlifaj, Jan</creator><general>The Hebrew University Magnes Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180601</creationdate><title>Approximations and Mittag-Leffler conditions the applications</title><author>Angeleri Hügel, Lidia ; Śaroch, Jan ; Trlifaj, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-5dd2b415c3a9a0905f03e9a6c91b4237bf8258806b7fd4b965005b3d9f3877f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Bass</topic><topic>Group Theory and Generalizations</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Modules</topic><topic>Rings (mathematics)</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Angeleri Hügel, Lidia</creatorcontrib><creatorcontrib>Śaroch, Jan</creatorcontrib><creatorcontrib>Trlifaj, Jan</creatorcontrib><collection>CrossRef</collection><jtitle>Israel journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Angeleri Hügel, Lidia</au><au>Śaroch, Jan</au><au>Trlifaj, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximations and Mittag-Leffler conditions the applications</atitle><jtitle>Israel journal of mathematics</jtitle><stitle>Isr. J. Math</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>226</volume><issue>2</issue><spage>757</spage><epage>780</epage><pages>757-780</pages><issn>0021-2172</issn><eissn>1565-8511</eissn><abstract>A classic result by Bass says that the class of all projective modules is covering if and only if it is closed under direct limits. Enochs extended the if-part by showing that every class of modules
C
, which is precovering and closed under direct limits, is covering, and asked whether the converse is true. We employ the tools developed in [18] and give a positive answer when
C
=
A
, or
C
is the class of all locally
A
≤
ω
-free modules, where
A
is any class of modules fitting in a cotorsion pair (
A
,
B
) such that
B
is closed under direct limits. This setting includes all cotorsion pairs and classes of locally free modules arising in (infinite-dimensional) tilting theory. We also consider two particular applications: to pure-semisimple rings, and Artin algebras of infinite representation type.</abstract><cop>Jerusalem</cop><pub>The Hebrew University Magnes Press</pub><doi>10.1007/s11856-018-1711-3</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-2172 |
ispartof | Israel journal of mathematics, 2018-06, Vol.226 (2), p.757-780 |
issn | 0021-2172 1565-8511 |
language | eng |
recordid | cdi_proquest_journals_2062201661 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algebra Analysis Applications of Mathematics Bass Group Theory and Generalizations Mathematical and Computational Physics Mathematics Mathematics and Statistics Modules Rings (mathematics) Theoretical |
title | Approximations and Mittag-Leffler conditions the applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T21%3A47%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximations%20and%20Mittag-Leffler%20conditions%20the%20applications&rft.jtitle=Israel%20journal%20of%20mathematics&rft.au=Angeleri%20H%C3%BCgel,%20Lidia&rft.date=2018-06-01&rft.volume=226&rft.issue=2&rft.spage=757&rft.epage=780&rft.pages=757-780&rft.issn=0021-2172&rft.eissn=1565-8511&rft_id=info:doi/10.1007/s11856-018-1711-3&rft_dat=%3Cproquest_cross%3E2062201661%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2062201661&rft_id=info:pmid/&rfr_iscdi=true |