High-temperature low-cycle fatigue behavior and microstructural evolution of an improved austenitic ODS steel
In this work, a high-temperature low-cycle fatigue (LCF) behavior of a newly developed austenitic oxide dispersion strengthened (ODS) steel is investigated. The LCF tests were performed in air at 650 °C under three different strain amplitudes (±0.4, ±0.5, and ±0.7%) with a nominal strain rate of 10−...
Gespeichert in:
Veröffentlicht in: | Journal of materials research 2018-06, Vol.33 (12), p.1814-1821 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1821 |
---|---|
container_issue | 12 |
container_start_page | 1814 |
container_title | Journal of materials research |
container_volume | 33 |
creator | Chauhan, Ankur Litvinov, Dimitri Gräning, Tim Aktaa, Jarir |
description | In this work, a high-temperature low-cycle fatigue (LCF) behavior of a newly developed austenitic oxide dispersion strengthened (ODS) steel is investigated. The LCF tests were performed in air at 650 °C under three different strain amplitudes (±0.4, ±0.5, and ±0.7%) with a nominal strain rate of 10−3 s−1. The measured cyclic stress response showed four distinct stages which include short initial stable cyclic response followed by a prolonged hardening with subsequent short saturation and finally crack initiation and growth stage. The rate of hardening and the duration of stages are a function of applied strain amplitude. Microstructural investigations were carried out to shed light on the deformation mechanisms. After cycling, the overall microstructure appears stable without any modifications in grain shape and size. In addition, twinning and stacking fault fractions remain unchanged. However, cyclic hardening is an aftermath of dislocation multiplication whose rate is also a function of applied strain amplitude. Furthermore, oxide particles, as well as fine grains, inhibit strain localization by restricting three-dimensional dislocation structure formation that are associated with the development of extrusions and intrusions and are readily observed in conventional austenitic non-ODS steels. |
doi_str_mv | 10.1557/jmr.2018.136 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2061995538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2018_136</cupid><sourcerecordid>2061995538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-5c39f3323daf148636c3cc27f5b2ffa91be0391647329ef436d34fa2d53aca153</originalsourceid><addsrcrecordid>eNqFkEtLAzEQx4MoWKs3P0DAq7vmuY-j1EeFQg_qOWSzkzZlHzWbrfTbm9KCJ_E0DPzmPzM_hG4pSamU-cOm9SkjtEgpz87QhBEhEslZdo4mpChEwkoqLtHVMGwIoZLkYoLauVutkwDtFrwOowfc9N-J2ZsGsNXBrUbAFaz1zvUe667GrTO-H4IfTaR1g2HXN2NwfYd7GwHs2q3vd1BjPQ4BOhecwcundxwbaK7RhdXNADenOkWfL88fs3myWL6-zR4XieF5HhJpeGk5Z7zWlooi45nhxrDcyopZq0taAeElzUTOWQlW8KzmwmpWS66NppJP0d0xN97yNcIQ1KYffRdXKkYyWpZS8iJS90fq8NHgwaqtd632e0WJOghVUag6CFVRaMSTIz5ErFuB_w39g09P8bqtvKtX8M_ADwNMiRI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2061995538</pqid></control><display><type>article</type><title>High-temperature low-cycle fatigue behavior and microstructural evolution of an improved austenitic ODS steel</title><source>Springer Nature - Complete Springer Journals</source><source>Cambridge University Press Journals Complete</source><creator>Chauhan, Ankur ; Litvinov, Dimitri ; Gräning, Tim ; Aktaa, Jarir</creator><creatorcontrib>Chauhan, Ankur ; Litvinov, Dimitri ; Gräning, Tim ; Aktaa, Jarir</creatorcontrib><description>In this work, a high-temperature low-cycle fatigue (LCF) behavior of a newly developed austenitic oxide dispersion strengthened (ODS) steel is investigated. The LCF tests were performed in air at 650 °C under three different strain amplitudes (±0.4, ±0.5, and ±0.7%) with a nominal strain rate of 10−3 s−1. The measured cyclic stress response showed four distinct stages which include short initial stable cyclic response followed by a prolonged hardening with subsequent short saturation and finally crack initiation and growth stage. The rate of hardening and the duration of stages are a function of applied strain amplitude. Microstructural investigations were carried out to shed light on the deformation mechanisms. After cycling, the overall microstructure appears stable without any modifications in grain shape and size. In addition, twinning and stacking fault fractions remain unchanged. However, cyclic hardening is an aftermath of dislocation multiplication whose rate is also a function of applied strain amplitude. Furthermore, oxide particles, as well as fine grains, inhibit strain localization by restricting three-dimensional dislocation structure formation that are associated with the development of extrusions and intrusions and are readily observed in conventional austenitic non-ODS steels.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2018.136</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Aeronautics ; Amplitudes ; Applied and Technical Physics ; Austenitic stainless steels ; Biomaterials ; Crack initiation ; Crack propagation ; Deformation mechanisms ; Dislocations ; Dispersion hardening steels ; Ductility ; Extrusion ; Fatigue failure ; Fracture mechanics ; Hardening rate ; Inorganic Chemistry ; Investigations ; Low cycle fatigue ; Materials Engineering ; Materials research ; Materials Science ; Mechanical properties ; Metal fatigue ; Microstructure ; Nanotechnology ; Neural networks ; Oxide dispersion strengthening ; Powder metallurgy ; Process controls ; Stacking faults ; Stainless steel ; Steel ; Strain analysis ; Strain localization ; Strain rate ; Studies ; Temperature ; Twinning</subject><ispartof>Journal of materials research, 2018-06, Vol.33 (12), p.1814-1821</ispartof><rights>Copyright © Materials Research Society 2018</rights><rights>The Materials Research Society 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-5c39f3323daf148636c3cc27f5b2ffa91be0391647329ef436d34fa2d53aca153</citedby><cites>FETCH-LOGICAL-c377t-5c39f3323daf148636c3cc27f5b2ffa91be0391647329ef436d34fa2d53aca153</cites><orcidid>0000-0002-6798-5882</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/jmr.2018.136$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S088429141800136X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,41464,42533,51294,55603</link.rule.ids></links><search><creatorcontrib>Chauhan, Ankur</creatorcontrib><creatorcontrib>Litvinov, Dimitri</creatorcontrib><creatorcontrib>Gräning, Tim</creatorcontrib><creatorcontrib>Aktaa, Jarir</creatorcontrib><title>High-temperature low-cycle fatigue behavior and microstructural evolution of an improved austenitic ODS steel</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><addtitle>J. Mater. Res</addtitle><description>In this work, a high-temperature low-cycle fatigue (LCF) behavior of a newly developed austenitic oxide dispersion strengthened (ODS) steel is investigated. The LCF tests were performed in air at 650 °C under three different strain amplitudes (±0.4, ±0.5, and ±0.7%) with a nominal strain rate of 10−3 s−1. The measured cyclic stress response showed four distinct stages which include short initial stable cyclic response followed by a prolonged hardening with subsequent short saturation and finally crack initiation and growth stage. The rate of hardening and the duration of stages are a function of applied strain amplitude. Microstructural investigations were carried out to shed light on the deformation mechanisms. After cycling, the overall microstructure appears stable without any modifications in grain shape and size. In addition, twinning and stacking fault fractions remain unchanged. However, cyclic hardening is an aftermath of dislocation multiplication whose rate is also a function of applied strain amplitude. Furthermore, oxide particles, as well as fine grains, inhibit strain localization by restricting three-dimensional dislocation structure formation that are associated with the development of extrusions and intrusions and are readily observed in conventional austenitic non-ODS steels.</description><subject>Aeronautics</subject><subject>Amplitudes</subject><subject>Applied and Technical Physics</subject><subject>Austenitic stainless steels</subject><subject>Biomaterials</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Deformation mechanisms</subject><subject>Dislocations</subject><subject>Dispersion hardening steels</subject><subject>Ductility</subject><subject>Extrusion</subject><subject>Fatigue failure</subject><subject>Fracture mechanics</subject><subject>Hardening rate</subject><subject>Inorganic Chemistry</subject><subject>Investigations</subject><subject>Low cycle fatigue</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Metal fatigue</subject><subject>Microstructure</subject><subject>Nanotechnology</subject><subject>Neural networks</subject><subject>Oxide dispersion strengthening</subject><subject>Powder metallurgy</subject><subject>Process controls</subject><subject>Stacking faults</subject><subject>Stainless steel</subject><subject>Steel</subject><subject>Strain analysis</subject><subject>Strain localization</subject><subject>Strain rate</subject><subject>Studies</subject><subject>Temperature</subject><subject>Twinning</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkEtLAzEQx4MoWKs3P0DAq7vmuY-j1EeFQg_qOWSzkzZlHzWbrfTbm9KCJ_E0DPzmPzM_hG4pSamU-cOm9SkjtEgpz87QhBEhEslZdo4mpChEwkoqLtHVMGwIoZLkYoLauVutkwDtFrwOowfc9N-J2ZsGsNXBrUbAFaz1zvUe667GrTO-H4IfTaR1g2HXN2NwfYd7GwHs2q3vd1BjPQ4BOhecwcundxwbaK7RhdXNADenOkWfL88fs3myWL6-zR4XieF5HhJpeGk5Z7zWlooi45nhxrDcyopZq0taAeElzUTOWQlW8KzmwmpWS66NppJP0d0xN97yNcIQ1KYffRdXKkYyWpZS8iJS90fq8NHgwaqtd632e0WJOghVUag6CFVRaMSTIz5ErFuB_w39g09P8bqtvKtX8M_ADwNMiRI</recordid><startdate>20180628</startdate><enddate>20180628</enddate><creator>Chauhan, Ankur</creator><creator>Litvinov, Dimitri</creator><creator>Gräning, Tim</creator><creator>Aktaa, Jarir</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-6798-5882</orcidid></search><sort><creationdate>20180628</creationdate><title>High-temperature low-cycle fatigue behavior and microstructural evolution of an improved austenitic ODS steel</title><author>Chauhan, Ankur ; Litvinov, Dimitri ; Gräning, Tim ; Aktaa, Jarir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-5c39f3323daf148636c3cc27f5b2ffa91be0391647329ef436d34fa2d53aca153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aeronautics</topic><topic>Amplitudes</topic><topic>Applied and Technical Physics</topic><topic>Austenitic stainless steels</topic><topic>Biomaterials</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Deformation mechanisms</topic><topic>Dislocations</topic><topic>Dispersion hardening steels</topic><topic>Ductility</topic><topic>Extrusion</topic><topic>Fatigue failure</topic><topic>Fracture mechanics</topic><topic>Hardening rate</topic><topic>Inorganic Chemistry</topic><topic>Investigations</topic><topic>Low cycle fatigue</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Metal fatigue</topic><topic>Microstructure</topic><topic>Nanotechnology</topic><topic>Neural networks</topic><topic>Oxide dispersion strengthening</topic><topic>Powder metallurgy</topic><topic>Process controls</topic><topic>Stacking faults</topic><topic>Stainless steel</topic><topic>Steel</topic><topic>Strain analysis</topic><topic>Strain localization</topic><topic>Strain rate</topic><topic>Studies</topic><topic>Temperature</topic><topic>Twinning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chauhan, Ankur</creatorcontrib><creatorcontrib>Litvinov, Dimitri</creatorcontrib><creatorcontrib>Gräning, Tim</creatorcontrib><creatorcontrib>Aktaa, Jarir</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chauhan, Ankur</au><au>Litvinov, Dimitri</au><au>Gräning, Tim</au><au>Aktaa, Jarir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-temperature low-cycle fatigue behavior and microstructural evolution of an improved austenitic ODS steel</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><addtitle>J. Mater. Res</addtitle><date>2018-06-28</date><risdate>2018</risdate><volume>33</volume><issue>12</issue><spage>1814</spage><epage>1821</epage><pages>1814-1821</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>In this work, a high-temperature low-cycle fatigue (LCF) behavior of a newly developed austenitic oxide dispersion strengthened (ODS) steel is investigated. The LCF tests were performed in air at 650 °C under three different strain amplitudes (±0.4, ±0.5, and ±0.7%) with a nominal strain rate of 10−3 s−1. The measured cyclic stress response showed four distinct stages which include short initial stable cyclic response followed by a prolonged hardening with subsequent short saturation and finally crack initiation and growth stage. The rate of hardening and the duration of stages are a function of applied strain amplitude. Microstructural investigations were carried out to shed light on the deformation mechanisms. After cycling, the overall microstructure appears stable without any modifications in grain shape and size. In addition, twinning and stacking fault fractions remain unchanged. However, cyclic hardening is an aftermath of dislocation multiplication whose rate is also a function of applied strain amplitude. Furthermore, oxide particles, as well as fine grains, inhibit strain localization by restricting three-dimensional dislocation structure formation that are associated with the development of extrusions and intrusions and are readily observed in conventional austenitic non-ODS steels.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2018.136</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6798-5882</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-2914 |
ispartof | Journal of materials research, 2018-06, Vol.33 (12), p.1814-1821 |
issn | 0884-2914 2044-5326 |
language | eng |
recordid | cdi_proquest_journals_2061995538 |
source | Springer Nature - Complete Springer Journals; Cambridge University Press Journals Complete |
subjects | Aeronautics Amplitudes Applied and Technical Physics Austenitic stainless steels Biomaterials Crack initiation Crack propagation Deformation mechanisms Dislocations Dispersion hardening steels Ductility Extrusion Fatigue failure Fracture mechanics Hardening rate Inorganic Chemistry Investigations Low cycle fatigue Materials Engineering Materials research Materials Science Mechanical properties Metal fatigue Microstructure Nanotechnology Neural networks Oxide dispersion strengthening Powder metallurgy Process controls Stacking faults Stainless steel Steel Strain analysis Strain localization Strain rate Studies Temperature Twinning |
title | High-temperature low-cycle fatigue behavior and microstructural evolution of an improved austenitic ODS steel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A16%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-temperature%20low-cycle%20fatigue%20behavior%20and%20microstructural%20evolution%20of%20an%20improved%20austenitic%20ODS%20steel&rft.jtitle=Journal%20of%20materials%20research&rft.au=Chauhan,%20Ankur&rft.date=2018-06-28&rft.volume=33&rft.issue=12&rft.spage=1814&rft.epage=1821&rft.pages=1814-1821&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/jmr.2018.136&rft_dat=%3Cproquest_cross%3E2061995538%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2061995538&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2018_136&rfr_iscdi=true |