High-temperature low-cycle fatigue behavior and microstructural evolution of an improved austenitic ODS steel

In this work, a high-temperature low-cycle fatigue (LCF) behavior of a newly developed austenitic oxide dispersion strengthened (ODS) steel is investigated. The LCF tests were performed in air at 650 °C under three different strain amplitudes (±0.4, ±0.5, and ±0.7%) with a nominal strain rate of 10−...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research 2018-06, Vol.33 (12), p.1814-1821
Hauptverfasser: Chauhan, Ankur, Litvinov, Dimitri, Gräning, Tim, Aktaa, Jarir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1821
container_issue 12
container_start_page 1814
container_title Journal of materials research
container_volume 33
creator Chauhan, Ankur
Litvinov, Dimitri
Gräning, Tim
Aktaa, Jarir
description In this work, a high-temperature low-cycle fatigue (LCF) behavior of a newly developed austenitic oxide dispersion strengthened (ODS) steel is investigated. The LCF tests were performed in air at 650 °C under three different strain amplitudes (±0.4, ±0.5, and ±0.7%) with a nominal strain rate of 10−3 s−1. The measured cyclic stress response showed four distinct stages which include short initial stable cyclic response followed by a prolonged hardening with subsequent short saturation and finally crack initiation and growth stage. The rate of hardening and the duration of stages are a function of applied strain amplitude. Microstructural investigations were carried out to shed light on the deformation mechanisms. After cycling, the overall microstructure appears stable without any modifications in grain shape and size. In addition, twinning and stacking fault fractions remain unchanged. However, cyclic hardening is an aftermath of dislocation multiplication whose rate is also a function of applied strain amplitude. Furthermore, oxide particles, as well as fine grains, inhibit strain localization by restricting three-dimensional dislocation structure formation that are associated with the development of extrusions and intrusions and are readily observed in conventional austenitic non-ODS steels.
doi_str_mv 10.1557/jmr.2018.136
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2061995538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2018_136</cupid><sourcerecordid>2061995538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-5c39f3323daf148636c3cc27f5b2ffa91be0391647329ef436d34fa2d53aca153</originalsourceid><addsrcrecordid>eNqFkEtLAzEQx4MoWKs3P0DAq7vmuY-j1EeFQg_qOWSzkzZlHzWbrfTbm9KCJ_E0DPzmPzM_hG4pSamU-cOm9SkjtEgpz87QhBEhEslZdo4mpChEwkoqLtHVMGwIoZLkYoLauVutkwDtFrwOowfc9N-J2ZsGsNXBrUbAFaz1zvUe667GrTO-H4IfTaR1g2HXN2NwfYd7GwHs2q3vd1BjPQ4BOhecwcundxwbaK7RhdXNADenOkWfL88fs3myWL6-zR4XieF5HhJpeGk5Z7zWlooi45nhxrDcyopZq0taAeElzUTOWQlW8KzmwmpWS66NppJP0d0xN97yNcIQ1KYffRdXKkYyWpZS8iJS90fq8NHgwaqtd632e0WJOghVUag6CFVRaMSTIz5ErFuB_w39g09P8bqtvKtX8M_ADwNMiRI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2061995538</pqid></control><display><type>article</type><title>High-temperature low-cycle fatigue behavior and microstructural evolution of an improved austenitic ODS steel</title><source>Springer Nature - Complete Springer Journals</source><source>Cambridge University Press Journals Complete</source><creator>Chauhan, Ankur ; Litvinov, Dimitri ; Gräning, Tim ; Aktaa, Jarir</creator><creatorcontrib>Chauhan, Ankur ; Litvinov, Dimitri ; Gräning, Tim ; Aktaa, Jarir</creatorcontrib><description>In this work, a high-temperature low-cycle fatigue (LCF) behavior of a newly developed austenitic oxide dispersion strengthened (ODS) steel is investigated. The LCF tests were performed in air at 650 °C under three different strain amplitudes (±0.4, ±0.5, and ±0.7%) with a nominal strain rate of 10−3 s−1. The measured cyclic stress response showed four distinct stages which include short initial stable cyclic response followed by a prolonged hardening with subsequent short saturation and finally crack initiation and growth stage. The rate of hardening and the duration of stages are a function of applied strain amplitude. Microstructural investigations were carried out to shed light on the deformation mechanisms. After cycling, the overall microstructure appears stable without any modifications in grain shape and size. In addition, twinning and stacking fault fractions remain unchanged. However, cyclic hardening is an aftermath of dislocation multiplication whose rate is also a function of applied strain amplitude. Furthermore, oxide particles, as well as fine grains, inhibit strain localization by restricting three-dimensional dislocation structure formation that are associated with the development of extrusions and intrusions and are readily observed in conventional austenitic non-ODS steels.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2018.136</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Aeronautics ; Amplitudes ; Applied and Technical Physics ; Austenitic stainless steels ; Biomaterials ; Crack initiation ; Crack propagation ; Deformation mechanisms ; Dislocations ; Dispersion hardening steels ; Ductility ; Extrusion ; Fatigue failure ; Fracture mechanics ; Hardening rate ; Inorganic Chemistry ; Investigations ; Low cycle fatigue ; Materials Engineering ; Materials research ; Materials Science ; Mechanical properties ; Metal fatigue ; Microstructure ; Nanotechnology ; Neural networks ; Oxide dispersion strengthening ; Powder metallurgy ; Process controls ; Stacking faults ; Stainless steel ; Steel ; Strain analysis ; Strain localization ; Strain rate ; Studies ; Temperature ; Twinning</subject><ispartof>Journal of materials research, 2018-06, Vol.33 (12), p.1814-1821</ispartof><rights>Copyright © Materials Research Society 2018</rights><rights>The Materials Research Society 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-5c39f3323daf148636c3cc27f5b2ffa91be0391647329ef436d34fa2d53aca153</citedby><cites>FETCH-LOGICAL-c377t-5c39f3323daf148636c3cc27f5b2ffa91be0391647329ef436d34fa2d53aca153</cites><orcidid>0000-0002-6798-5882</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/jmr.2018.136$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S088429141800136X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,41464,42533,51294,55603</link.rule.ids></links><search><creatorcontrib>Chauhan, Ankur</creatorcontrib><creatorcontrib>Litvinov, Dimitri</creatorcontrib><creatorcontrib>Gräning, Tim</creatorcontrib><creatorcontrib>Aktaa, Jarir</creatorcontrib><title>High-temperature low-cycle fatigue behavior and microstructural evolution of an improved austenitic ODS steel</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><addtitle>J. Mater. Res</addtitle><description>In this work, a high-temperature low-cycle fatigue (LCF) behavior of a newly developed austenitic oxide dispersion strengthened (ODS) steel is investigated. The LCF tests were performed in air at 650 °C under three different strain amplitudes (±0.4, ±0.5, and ±0.7%) with a nominal strain rate of 10−3 s−1. The measured cyclic stress response showed four distinct stages which include short initial stable cyclic response followed by a prolonged hardening with subsequent short saturation and finally crack initiation and growth stage. The rate of hardening and the duration of stages are a function of applied strain amplitude. Microstructural investigations were carried out to shed light on the deformation mechanisms. After cycling, the overall microstructure appears stable without any modifications in grain shape and size. In addition, twinning and stacking fault fractions remain unchanged. However, cyclic hardening is an aftermath of dislocation multiplication whose rate is also a function of applied strain amplitude. Furthermore, oxide particles, as well as fine grains, inhibit strain localization by restricting three-dimensional dislocation structure formation that are associated with the development of extrusions and intrusions and are readily observed in conventional austenitic non-ODS steels.</description><subject>Aeronautics</subject><subject>Amplitudes</subject><subject>Applied and Technical Physics</subject><subject>Austenitic stainless steels</subject><subject>Biomaterials</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Deformation mechanisms</subject><subject>Dislocations</subject><subject>Dispersion hardening steels</subject><subject>Ductility</subject><subject>Extrusion</subject><subject>Fatigue failure</subject><subject>Fracture mechanics</subject><subject>Hardening rate</subject><subject>Inorganic Chemistry</subject><subject>Investigations</subject><subject>Low cycle fatigue</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Metal fatigue</subject><subject>Microstructure</subject><subject>Nanotechnology</subject><subject>Neural networks</subject><subject>Oxide dispersion strengthening</subject><subject>Powder metallurgy</subject><subject>Process controls</subject><subject>Stacking faults</subject><subject>Stainless steel</subject><subject>Steel</subject><subject>Strain analysis</subject><subject>Strain localization</subject><subject>Strain rate</subject><subject>Studies</subject><subject>Temperature</subject><subject>Twinning</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkEtLAzEQx4MoWKs3P0DAq7vmuY-j1EeFQg_qOWSzkzZlHzWbrfTbm9KCJ_E0DPzmPzM_hG4pSamU-cOm9SkjtEgpz87QhBEhEslZdo4mpChEwkoqLtHVMGwIoZLkYoLauVutkwDtFrwOowfc9N-J2ZsGsNXBrUbAFaz1zvUe667GrTO-H4IfTaR1g2HXN2NwfYd7GwHs2q3vd1BjPQ4BOhecwcundxwbaK7RhdXNADenOkWfL88fs3myWL6-zR4XieF5HhJpeGk5Z7zWlooi45nhxrDcyopZq0taAeElzUTOWQlW8KzmwmpWS66NppJP0d0xN97yNcIQ1KYffRdXKkYyWpZS8iJS90fq8NHgwaqtd632e0WJOghVUag6CFVRaMSTIz5ErFuB_w39g09P8bqtvKtX8M_ADwNMiRI</recordid><startdate>20180628</startdate><enddate>20180628</enddate><creator>Chauhan, Ankur</creator><creator>Litvinov, Dimitri</creator><creator>Gräning, Tim</creator><creator>Aktaa, Jarir</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-6798-5882</orcidid></search><sort><creationdate>20180628</creationdate><title>High-temperature low-cycle fatigue behavior and microstructural evolution of an improved austenitic ODS steel</title><author>Chauhan, Ankur ; Litvinov, Dimitri ; Gräning, Tim ; Aktaa, Jarir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-5c39f3323daf148636c3cc27f5b2ffa91be0391647329ef436d34fa2d53aca153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aeronautics</topic><topic>Amplitudes</topic><topic>Applied and Technical Physics</topic><topic>Austenitic stainless steels</topic><topic>Biomaterials</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Deformation mechanisms</topic><topic>Dislocations</topic><topic>Dispersion hardening steels</topic><topic>Ductility</topic><topic>Extrusion</topic><topic>Fatigue failure</topic><topic>Fracture mechanics</topic><topic>Hardening rate</topic><topic>Inorganic Chemistry</topic><topic>Investigations</topic><topic>Low cycle fatigue</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Metal fatigue</topic><topic>Microstructure</topic><topic>Nanotechnology</topic><topic>Neural networks</topic><topic>Oxide dispersion strengthening</topic><topic>Powder metallurgy</topic><topic>Process controls</topic><topic>Stacking faults</topic><topic>Stainless steel</topic><topic>Steel</topic><topic>Strain analysis</topic><topic>Strain localization</topic><topic>Strain rate</topic><topic>Studies</topic><topic>Temperature</topic><topic>Twinning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chauhan, Ankur</creatorcontrib><creatorcontrib>Litvinov, Dimitri</creatorcontrib><creatorcontrib>Gräning, Tim</creatorcontrib><creatorcontrib>Aktaa, Jarir</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chauhan, Ankur</au><au>Litvinov, Dimitri</au><au>Gräning, Tim</au><au>Aktaa, Jarir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-temperature low-cycle fatigue behavior and microstructural evolution of an improved austenitic ODS steel</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><addtitle>J. Mater. Res</addtitle><date>2018-06-28</date><risdate>2018</risdate><volume>33</volume><issue>12</issue><spage>1814</spage><epage>1821</epage><pages>1814-1821</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>In this work, a high-temperature low-cycle fatigue (LCF) behavior of a newly developed austenitic oxide dispersion strengthened (ODS) steel is investigated. The LCF tests were performed in air at 650 °C under three different strain amplitudes (±0.4, ±0.5, and ±0.7%) with a nominal strain rate of 10−3 s−1. The measured cyclic stress response showed four distinct stages which include short initial stable cyclic response followed by a prolonged hardening with subsequent short saturation and finally crack initiation and growth stage. The rate of hardening and the duration of stages are a function of applied strain amplitude. Microstructural investigations were carried out to shed light on the deformation mechanisms. After cycling, the overall microstructure appears stable without any modifications in grain shape and size. In addition, twinning and stacking fault fractions remain unchanged. However, cyclic hardening is an aftermath of dislocation multiplication whose rate is also a function of applied strain amplitude. Furthermore, oxide particles, as well as fine grains, inhibit strain localization by restricting three-dimensional dislocation structure formation that are associated with the development of extrusions and intrusions and are readily observed in conventional austenitic non-ODS steels.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2018.136</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6798-5882</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2018-06, Vol.33 (12), p.1814-1821
issn 0884-2914
2044-5326
language eng
recordid cdi_proquest_journals_2061995538
source Springer Nature - Complete Springer Journals; Cambridge University Press Journals Complete
subjects Aeronautics
Amplitudes
Applied and Technical Physics
Austenitic stainless steels
Biomaterials
Crack initiation
Crack propagation
Deformation mechanisms
Dislocations
Dispersion hardening steels
Ductility
Extrusion
Fatigue failure
Fracture mechanics
Hardening rate
Inorganic Chemistry
Investigations
Low cycle fatigue
Materials Engineering
Materials research
Materials Science
Mechanical properties
Metal fatigue
Microstructure
Nanotechnology
Neural networks
Oxide dispersion strengthening
Powder metallurgy
Process controls
Stacking faults
Stainless steel
Steel
Strain analysis
Strain localization
Strain rate
Studies
Temperature
Twinning
title High-temperature low-cycle fatigue behavior and microstructural evolution of an improved austenitic ODS steel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A16%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-temperature%20low-cycle%20fatigue%20behavior%20and%20microstructural%20evolution%20of%20an%20improved%20austenitic%20ODS%20steel&rft.jtitle=Journal%20of%20materials%20research&rft.au=Chauhan,%20Ankur&rft.date=2018-06-28&rft.volume=33&rft.issue=12&rft.spage=1814&rft.epage=1821&rft.pages=1814-1821&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/jmr.2018.136&rft_dat=%3Cproquest_cross%3E2061995538%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2061995538&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2018_136&rfr_iscdi=true