Multiscale finite-element method for linear elastic geomechanics
The demand for accurate and efficient simulation of geomechanical effects is widely increasing in the geoscience community. High resolution characterizations of the mechanical properties of subsurface formations are essential for improving modeling predictions. Such detailed descriptions impose seve...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2017-02, Vol.331, p.337-356 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 356 |
---|---|
container_issue | |
container_start_page | 337 |
container_title | Journal of computational physics |
container_volume | 331 |
creator | Castelletto, Nicola Hajibeygi, Hadi Tchelepi, Hamdi A. |
description | The demand for accurate and efficient simulation of geomechanical effects is widely increasing in the geoscience community. High resolution characterizations of the mechanical properties of subsurface formations are essential for improving modeling predictions. Such detailed descriptions impose severe computational challenges and motivate the development of multiscale solution strategies. We propose a multiscale solution framework for the geomechanical equilibrium problem of heterogeneous porous media based on the finite-element method. After imposing a coarse-scale grid on the given fine-scale problem, the coarse-scale basis functions are obtained by solving local equilibrium problems within coarse elements. These basis functions form the restriction and prolongation operators used to obtain the coarse-scale system for the displacement-vector. Then, a two-stage preconditioner that couples the multiscale system with a smoother is derived for the iterative solution of the fine-scale linear system. Various numerical experiments are presented to demonstrate accuracy and robustness of the method. |
doi_str_mv | 10.1016/j.jcp.2016.11.044 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2061993094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999116306362</els_id><sourcerecordid>2061993094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-cde4edddd5f9186b05fd490309d6a15c6cfb77c4eb7ad56e74f85ea16945acbf3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwA7hF4pzgTW0nFhdQxUsq4gJny7HX1FEexXaR-PcYlTN72T3MzI4-Qi6BVkBBXPdVb3ZVnc8KoKKMHZEFUEnLugFxTBaU1lBKKeGUnMXYU0pbztoFuX3ZD8lHowcsnJ98whIHHHFKxYhpO9vCzaEY_IQ6FDjomLwpPnAe0Wz15E08JydODxEv_vaSvD_cv62fys3r4_P6blOalWhTaSwytHm4k9CKjnJnmaQrKq3QwI0wrmsaw7BrtOUCG-ZajhqEZFybzq2W5OqQuwvz5x5jUv28D1N-qWoqQMocxbIKDioT5hgDOrULftThWwFVv6BUrzIo9QtKAagMKntuDh7M9b88BhWNx8mg9QFNUnb2_7h_ACx3cag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2061993094</pqid></control><display><type>article</type><title>Multiscale finite-element method for linear elastic geomechanics</title><source>Elsevier ScienceDirect Journals</source><creator>Castelletto, Nicola ; Hajibeygi, Hadi ; Tchelepi, Hamdi A.</creator><creatorcontrib>Castelletto, Nicola ; Hajibeygi, Hadi ; Tchelepi, Hamdi A.</creatorcontrib><description>The demand for accurate and efficient simulation of geomechanical effects is widely increasing in the geoscience community. High resolution characterizations of the mechanical properties of subsurface formations are essential for improving modeling predictions. Such detailed descriptions impose severe computational challenges and motivate the development of multiscale solution strategies. We propose a multiscale solution framework for the geomechanical equilibrium problem of heterogeneous porous media based on the finite-element method. After imposing a coarse-scale grid on the given fine-scale problem, the coarse-scale basis functions are obtained by solving local equilibrium problems within coarse elements. These basis functions form the restriction and prolongation operators used to obtain the coarse-scale system for the displacement-vector. Then, a two-stage preconditioner that couples the multiscale system with a smoother is derived for the iterative solution of the fine-scale linear system. Various numerical experiments are presented to demonstrate accuracy and robustness of the method.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2016.11.044</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Basis functions ; Computational physics ; Computer simulation ; Earth science ; Equilibrium ; Finite element analysis ; Finite element method ; Geomechanics ; Iterative methods ; Iterative solution ; Mathematical analysis ; Mathematical models ; Mechanical properties ; Mechanics ; Multiscale analysis ; Multiscale finite-element method ; Multiscale methods ; Porous materials ; Porous media ; Preconditioning ; Prolongation ; Robustness (mathematics)</subject><ispartof>Journal of computational physics, 2017-02, Vol.331, p.337-356</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Feb 15, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-cde4edddd5f9186b05fd490309d6a15c6cfb77c4eb7ad56e74f85ea16945acbf3</citedby><cites>FETCH-LOGICAL-c368t-cde4edddd5f9186b05fd490309d6a15c6cfb77c4eb7ad56e74f85ea16945acbf3</cites><orcidid>0000-0002-8517-8283</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021999116306362$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Castelletto, Nicola</creatorcontrib><creatorcontrib>Hajibeygi, Hadi</creatorcontrib><creatorcontrib>Tchelepi, Hamdi A.</creatorcontrib><title>Multiscale finite-element method for linear elastic geomechanics</title><title>Journal of computational physics</title><description>The demand for accurate and efficient simulation of geomechanical effects is widely increasing in the geoscience community. High resolution characterizations of the mechanical properties of subsurface formations are essential for improving modeling predictions. Such detailed descriptions impose severe computational challenges and motivate the development of multiscale solution strategies. We propose a multiscale solution framework for the geomechanical equilibrium problem of heterogeneous porous media based on the finite-element method. After imposing a coarse-scale grid on the given fine-scale problem, the coarse-scale basis functions are obtained by solving local equilibrium problems within coarse elements. These basis functions form the restriction and prolongation operators used to obtain the coarse-scale system for the displacement-vector. Then, a two-stage preconditioner that couples the multiscale system with a smoother is derived for the iterative solution of the fine-scale linear system. Various numerical experiments are presented to demonstrate accuracy and robustness of the method.</description><subject>Basis functions</subject><subject>Computational physics</subject><subject>Computer simulation</subject><subject>Earth science</subject><subject>Equilibrium</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Geomechanics</subject><subject>Iterative methods</subject><subject>Iterative solution</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Mechanics</subject><subject>Multiscale analysis</subject><subject>Multiscale finite-element method</subject><subject>Multiscale methods</subject><subject>Porous materials</subject><subject>Porous media</subject><subject>Preconditioning</subject><subject>Prolongation</subject><subject>Robustness (mathematics)</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwA7hF4pzgTW0nFhdQxUsq4gJny7HX1FEexXaR-PcYlTN72T3MzI4-Qi6BVkBBXPdVb3ZVnc8KoKKMHZEFUEnLugFxTBaU1lBKKeGUnMXYU0pbztoFuX3ZD8lHowcsnJ98whIHHHFKxYhpO9vCzaEY_IQ6FDjomLwpPnAe0Wz15E08JydODxEv_vaSvD_cv62fys3r4_P6blOalWhTaSwytHm4k9CKjnJnmaQrKq3QwI0wrmsaw7BrtOUCG-ZajhqEZFybzq2W5OqQuwvz5x5jUv28D1N-qWoqQMocxbIKDioT5hgDOrULftThWwFVv6BUrzIo9QtKAagMKntuDh7M9b88BhWNx8mg9QFNUnb2_7h_ACx3cag</recordid><startdate>20170215</startdate><enddate>20170215</enddate><creator>Castelletto, Nicola</creator><creator>Hajibeygi, Hadi</creator><creator>Tchelepi, Hamdi A.</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8517-8283</orcidid></search><sort><creationdate>20170215</creationdate><title>Multiscale finite-element method for linear elastic geomechanics</title><author>Castelletto, Nicola ; Hajibeygi, Hadi ; Tchelepi, Hamdi A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-cde4edddd5f9186b05fd490309d6a15c6cfb77c4eb7ad56e74f85ea16945acbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Basis functions</topic><topic>Computational physics</topic><topic>Computer simulation</topic><topic>Earth science</topic><topic>Equilibrium</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Geomechanics</topic><topic>Iterative methods</topic><topic>Iterative solution</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Mechanics</topic><topic>Multiscale analysis</topic><topic>Multiscale finite-element method</topic><topic>Multiscale methods</topic><topic>Porous materials</topic><topic>Porous media</topic><topic>Preconditioning</topic><topic>Prolongation</topic><topic>Robustness (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castelletto, Nicola</creatorcontrib><creatorcontrib>Hajibeygi, Hadi</creatorcontrib><creatorcontrib>Tchelepi, Hamdi A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castelletto, Nicola</au><au>Hajibeygi, Hadi</au><au>Tchelepi, Hamdi A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale finite-element method for linear elastic geomechanics</atitle><jtitle>Journal of computational physics</jtitle><date>2017-02-15</date><risdate>2017</risdate><volume>331</volume><spage>337</spage><epage>356</epage><pages>337-356</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>The demand for accurate and efficient simulation of geomechanical effects is widely increasing in the geoscience community. High resolution characterizations of the mechanical properties of subsurface formations are essential for improving modeling predictions. Such detailed descriptions impose severe computational challenges and motivate the development of multiscale solution strategies. We propose a multiscale solution framework for the geomechanical equilibrium problem of heterogeneous porous media based on the finite-element method. After imposing a coarse-scale grid on the given fine-scale problem, the coarse-scale basis functions are obtained by solving local equilibrium problems within coarse elements. These basis functions form the restriction and prolongation operators used to obtain the coarse-scale system for the displacement-vector. Then, a two-stage preconditioner that couples the multiscale system with a smoother is derived for the iterative solution of the fine-scale linear system. Various numerical experiments are presented to demonstrate accuracy and robustness of the method.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2016.11.044</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-8517-8283</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2017-02, Vol.331, p.337-356 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_journals_2061993094 |
source | Elsevier ScienceDirect Journals |
subjects | Basis functions Computational physics Computer simulation Earth science Equilibrium Finite element analysis Finite element method Geomechanics Iterative methods Iterative solution Mathematical analysis Mathematical models Mechanical properties Mechanics Multiscale analysis Multiscale finite-element method Multiscale methods Porous materials Porous media Preconditioning Prolongation Robustness (mathematics) |
title | Multiscale finite-element method for linear elastic geomechanics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A43%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20finite-element%20method%20for%20linear%20elastic%20geomechanics&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Castelletto,%20Nicola&rft.date=2017-02-15&rft.volume=331&rft.spage=337&rft.epage=356&rft.pages=337-356&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2016.11.044&rft_dat=%3Cproquest_cross%3E2061993094%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2061993094&rft_id=info:pmid/&rft_els_id=S0021999116306362&rfr_iscdi=true |