Multiscale finite-element method for linear elastic geomechanics

The demand for accurate and efficient simulation of geomechanical effects is widely increasing in the geoscience community. High resolution characterizations of the mechanical properties of subsurface formations are essential for improving modeling predictions. Such detailed descriptions impose seve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2017-02, Vol.331, p.337-356
Hauptverfasser: Castelletto, Nicola, Hajibeygi, Hadi, Tchelepi, Hamdi A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 356
container_issue
container_start_page 337
container_title Journal of computational physics
container_volume 331
creator Castelletto, Nicola
Hajibeygi, Hadi
Tchelepi, Hamdi A.
description The demand for accurate and efficient simulation of geomechanical effects is widely increasing in the geoscience community. High resolution characterizations of the mechanical properties of subsurface formations are essential for improving modeling predictions. Such detailed descriptions impose severe computational challenges and motivate the development of multiscale solution strategies. We propose a multiscale solution framework for the geomechanical equilibrium problem of heterogeneous porous media based on the finite-element method. After imposing a coarse-scale grid on the given fine-scale problem, the coarse-scale basis functions are obtained by solving local equilibrium problems within coarse elements. These basis functions form the restriction and prolongation operators used to obtain the coarse-scale system for the displacement-vector. Then, a two-stage preconditioner that couples the multiscale system with a smoother is derived for the iterative solution of the fine-scale linear system. Various numerical experiments are presented to demonstrate accuracy and robustness of the method.
doi_str_mv 10.1016/j.jcp.2016.11.044
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2061993094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999116306362</els_id><sourcerecordid>2061993094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-cde4edddd5f9186b05fd490309d6a15c6cfb77c4eb7ad56e74f85ea16945acbf3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwA7hF4pzgTW0nFhdQxUsq4gJny7HX1FEexXaR-PcYlTN72T3MzI4-Qi6BVkBBXPdVb3ZVnc8KoKKMHZEFUEnLugFxTBaU1lBKKeGUnMXYU0pbztoFuX3ZD8lHowcsnJ98whIHHHFKxYhpO9vCzaEY_IQ6FDjomLwpPnAe0Wz15E08JydODxEv_vaSvD_cv62fys3r4_P6blOalWhTaSwytHm4k9CKjnJnmaQrKq3QwI0wrmsaw7BrtOUCG-ZajhqEZFybzq2W5OqQuwvz5x5jUv28D1N-qWoqQMocxbIKDioT5hgDOrULftThWwFVv6BUrzIo9QtKAagMKntuDh7M9b88BhWNx8mg9QFNUnb2_7h_ACx3cag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2061993094</pqid></control><display><type>article</type><title>Multiscale finite-element method for linear elastic geomechanics</title><source>Elsevier ScienceDirect Journals</source><creator>Castelletto, Nicola ; Hajibeygi, Hadi ; Tchelepi, Hamdi A.</creator><creatorcontrib>Castelletto, Nicola ; Hajibeygi, Hadi ; Tchelepi, Hamdi A.</creatorcontrib><description>The demand for accurate and efficient simulation of geomechanical effects is widely increasing in the geoscience community. High resolution characterizations of the mechanical properties of subsurface formations are essential for improving modeling predictions. Such detailed descriptions impose severe computational challenges and motivate the development of multiscale solution strategies. We propose a multiscale solution framework for the geomechanical equilibrium problem of heterogeneous porous media based on the finite-element method. After imposing a coarse-scale grid on the given fine-scale problem, the coarse-scale basis functions are obtained by solving local equilibrium problems within coarse elements. These basis functions form the restriction and prolongation operators used to obtain the coarse-scale system for the displacement-vector. Then, a two-stage preconditioner that couples the multiscale system with a smoother is derived for the iterative solution of the fine-scale linear system. Various numerical experiments are presented to demonstrate accuracy and robustness of the method.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2016.11.044</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Basis functions ; Computational physics ; Computer simulation ; Earth science ; Equilibrium ; Finite element analysis ; Finite element method ; Geomechanics ; Iterative methods ; Iterative solution ; Mathematical analysis ; Mathematical models ; Mechanical properties ; Mechanics ; Multiscale analysis ; Multiscale finite-element method ; Multiscale methods ; Porous materials ; Porous media ; Preconditioning ; Prolongation ; Robustness (mathematics)</subject><ispartof>Journal of computational physics, 2017-02, Vol.331, p.337-356</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Feb 15, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-cde4edddd5f9186b05fd490309d6a15c6cfb77c4eb7ad56e74f85ea16945acbf3</citedby><cites>FETCH-LOGICAL-c368t-cde4edddd5f9186b05fd490309d6a15c6cfb77c4eb7ad56e74f85ea16945acbf3</cites><orcidid>0000-0002-8517-8283</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021999116306362$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Castelletto, Nicola</creatorcontrib><creatorcontrib>Hajibeygi, Hadi</creatorcontrib><creatorcontrib>Tchelepi, Hamdi A.</creatorcontrib><title>Multiscale finite-element method for linear elastic geomechanics</title><title>Journal of computational physics</title><description>The demand for accurate and efficient simulation of geomechanical effects is widely increasing in the geoscience community. High resolution characterizations of the mechanical properties of subsurface formations are essential for improving modeling predictions. Such detailed descriptions impose severe computational challenges and motivate the development of multiscale solution strategies. We propose a multiscale solution framework for the geomechanical equilibrium problem of heterogeneous porous media based on the finite-element method. After imposing a coarse-scale grid on the given fine-scale problem, the coarse-scale basis functions are obtained by solving local equilibrium problems within coarse elements. These basis functions form the restriction and prolongation operators used to obtain the coarse-scale system for the displacement-vector. Then, a two-stage preconditioner that couples the multiscale system with a smoother is derived for the iterative solution of the fine-scale linear system. Various numerical experiments are presented to demonstrate accuracy and robustness of the method.</description><subject>Basis functions</subject><subject>Computational physics</subject><subject>Computer simulation</subject><subject>Earth science</subject><subject>Equilibrium</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Geomechanics</subject><subject>Iterative methods</subject><subject>Iterative solution</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Mechanics</subject><subject>Multiscale analysis</subject><subject>Multiscale finite-element method</subject><subject>Multiscale methods</subject><subject>Porous materials</subject><subject>Porous media</subject><subject>Preconditioning</subject><subject>Prolongation</subject><subject>Robustness (mathematics)</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwA7hF4pzgTW0nFhdQxUsq4gJny7HX1FEexXaR-PcYlTN72T3MzI4-Qi6BVkBBXPdVb3ZVnc8KoKKMHZEFUEnLugFxTBaU1lBKKeGUnMXYU0pbztoFuX3ZD8lHowcsnJ98whIHHHFKxYhpO9vCzaEY_IQ6FDjomLwpPnAe0Wz15E08JydODxEv_vaSvD_cv62fys3r4_P6blOalWhTaSwytHm4k9CKjnJnmaQrKq3QwI0wrmsaw7BrtOUCG-ZajhqEZFybzq2W5OqQuwvz5x5jUv28D1N-qWoqQMocxbIKDioT5hgDOrULftThWwFVv6BUrzIo9QtKAagMKntuDh7M9b88BhWNx8mg9QFNUnb2_7h_ACx3cag</recordid><startdate>20170215</startdate><enddate>20170215</enddate><creator>Castelletto, Nicola</creator><creator>Hajibeygi, Hadi</creator><creator>Tchelepi, Hamdi A.</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8517-8283</orcidid></search><sort><creationdate>20170215</creationdate><title>Multiscale finite-element method for linear elastic geomechanics</title><author>Castelletto, Nicola ; Hajibeygi, Hadi ; Tchelepi, Hamdi A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-cde4edddd5f9186b05fd490309d6a15c6cfb77c4eb7ad56e74f85ea16945acbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Basis functions</topic><topic>Computational physics</topic><topic>Computer simulation</topic><topic>Earth science</topic><topic>Equilibrium</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Geomechanics</topic><topic>Iterative methods</topic><topic>Iterative solution</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Mechanics</topic><topic>Multiscale analysis</topic><topic>Multiscale finite-element method</topic><topic>Multiscale methods</topic><topic>Porous materials</topic><topic>Porous media</topic><topic>Preconditioning</topic><topic>Prolongation</topic><topic>Robustness (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castelletto, Nicola</creatorcontrib><creatorcontrib>Hajibeygi, Hadi</creatorcontrib><creatorcontrib>Tchelepi, Hamdi A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castelletto, Nicola</au><au>Hajibeygi, Hadi</au><au>Tchelepi, Hamdi A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale finite-element method for linear elastic geomechanics</atitle><jtitle>Journal of computational physics</jtitle><date>2017-02-15</date><risdate>2017</risdate><volume>331</volume><spage>337</spage><epage>356</epage><pages>337-356</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>The demand for accurate and efficient simulation of geomechanical effects is widely increasing in the geoscience community. High resolution characterizations of the mechanical properties of subsurface formations are essential for improving modeling predictions. Such detailed descriptions impose severe computational challenges and motivate the development of multiscale solution strategies. We propose a multiscale solution framework for the geomechanical equilibrium problem of heterogeneous porous media based on the finite-element method. After imposing a coarse-scale grid on the given fine-scale problem, the coarse-scale basis functions are obtained by solving local equilibrium problems within coarse elements. These basis functions form the restriction and prolongation operators used to obtain the coarse-scale system for the displacement-vector. Then, a two-stage preconditioner that couples the multiscale system with a smoother is derived for the iterative solution of the fine-scale linear system. Various numerical experiments are presented to demonstrate accuracy and robustness of the method.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2016.11.044</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-8517-8283</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2017-02, Vol.331, p.337-356
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_journals_2061993094
source Elsevier ScienceDirect Journals
subjects Basis functions
Computational physics
Computer simulation
Earth science
Equilibrium
Finite element analysis
Finite element method
Geomechanics
Iterative methods
Iterative solution
Mathematical analysis
Mathematical models
Mechanical properties
Mechanics
Multiscale analysis
Multiscale finite-element method
Multiscale methods
Porous materials
Porous media
Preconditioning
Prolongation
Robustness (mathematics)
title Multiscale finite-element method for linear elastic geomechanics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A43%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20finite-element%20method%20for%20linear%20elastic%20geomechanics&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Castelletto,%20Nicola&rft.date=2017-02-15&rft.volume=331&rft.spage=337&rft.epage=356&rft.pages=337-356&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2016.11.044&rft_dat=%3Cproquest_cross%3E2061993094%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2061993094&rft_id=info:pmid/&rft_els_id=S0021999116306362&rfr_iscdi=true