Factorizing the factorization – a spectral-element solver for elliptic equations with linear operation count

The paper proposes a novel factorization technique for static condensation of a spectral-element discretization matrix that yields a linear operation count of just 13N multiplications for the residual evaluation, where N is the total number of unknowns. In comparison to previous work it saves a fact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2017-10, Vol.346, p.437-448
Hauptverfasser: Huismann, Immo, Stiller, Jörg, Fröhlich, Jochen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 448
container_issue
container_start_page 437
container_title Journal of computational physics
container_volume 346
creator Huismann, Immo
Stiller, Jörg
Fröhlich, Jochen
description The paper proposes a novel factorization technique for static condensation of a spectral-element discretization matrix that yields a linear operation count of just 13N multiplications for the residual evaluation, where N is the total number of unknowns. In comparison to previous work it saves a factor larger than 3 and outpaces unfactored variants for all polynomial degrees. Using the new technique as a building block for a preconditioned conjugate gradient method yields linear scaling of the runtime with N which is demonstrated for polynomial degrees from 2 to 32. This makes the spectral-element method cost effective even for low polynomial degrees. Moreover, the dependence of the iterative solution on the element aspect ratio is addressed, showing only a slight increase in the number of iterations for aspect ratios up to 128. Hence, the solver is very robust for practical applications.
doi_str_mv 10.1016/j.jcp.2017.06.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2061954459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999117304576</els_id><sourcerecordid>2061954459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-c613fd8f97ebfbb868c60aaf1f41c92bed5648eaea25bcf8074f5857955dc5ed3</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK4-gLeA59ZJt0kbPMniqiB40XNI04mm1KYm2RU9-Q6-oU9idffsaRj4v3-Gj5BTBjkDJs67vDNjXgCrchA5sGKPzBhIyIqKiX0yAyhYJqVkh-Qoxg4Aal7WMzKstEk-uA83PNH0jNTudp2cH-j35xfVNI5oUtB9hj2-4JBo9P0GA7U-UOx7NyZnKL6u_5hI31x6pr0bUAfqRwzbKuPXQzomB1b3EU92c04eV1cPy5vs7v76dnl5l5lFwVNmBFvYtraywsY2TS1qI0Bry2zJjCwabLkoa9SoC94YW0NVWl7zSnLeGo7tYk7Otr1j8K9rjEl1fh2G6aQqQDDJy5LLKcW2KRN8jAGtGoN70eFdMVC_WlWnJq3qV6sCoSatE3OxZXB6f-MwqGgcDgZbFyZLqvXuH_oHP0mEHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2061954459</pqid></control><display><type>article</type><title>Factorizing the factorization – a spectral-element solver for elliptic equations with linear operation count</title><source>Elsevier ScienceDirect Journals</source><creator>Huismann, Immo ; Stiller, Jörg ; Fröhlich, Jochen</creator><creatorcontrib>Huismann, Immo ; Stiller, Jörg ; Fröhlich, Jochen</creatorcontrib><description>The paper proposes a novel factorization technique for static condensation of a spectral-element discretization matrix that yields a linear operation count of just 13N multiplications for the residual evaluation, where N is the total number of unknowns. In comparison to previous work it saves a factor larger than 3 and outpaces unfactored variants for all polynomial degrees. Using the new technique as a building block for a preconditioned conjugate gradient method yields linear scaling of the runtime with N which is demonstrated for polynomial degrees from 2 to 32. This makes the spectral-element method cost effective even for low polynomial degrees. Moreover, the dependence of the iterative solution on the element aspect ratio is addressed, showing only a slight increase in the number of iterations for aspect ratios up to 128. Hence, the solver is very robust for practical applications.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2017.06.012</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Aspect ratio ; Computational physics ; Conjugate gradient method ; Dependence ; Elliptic equations ; Elliptic functions ; Factorial experiments ; Factorization ; Iterative solution ; Linear equations ; Mathematical analysis ; Matrix methods ; Polynomials ; Spectra ; Spectral element method ; Static condensation ; Studies ; Substructuring</subject><ispartof>Journal of computational physics, 2017-10, Vol.346, p.437-448</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Oct 1, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-c613fd8f97ebfbb868c60aaf1f41c92bed5648eaea25bcf8074f5857955dc5ed3</citedby><cites>FETCH-LOGICAL-c325t-c613fd8f97ebfbb868c60aaf1f41c92bed5648eaea25bcf8074f5857955dc5ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021999117304576$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Huismann, Immo</creatorcontrib><creatorcontrib>Stiller, Jörg</creatorcontrib><creatorcontrib>Fröhlich, Jochen</creatorcontrib><title>Factorizing the factorization – a spectral-element solver for elliptic equations with linear operation count</title><title>Journal of computational physics</title><description>The paper proposes a novel factorization technique for static condensation of a spectral-element discretization matrix that yields a linear operation count of just 13N multiplications for the residual evaluation, where N is the total number of unknowns. In comparison to previous work it saves a factor larger than 3 and outpaces unfactored variants for all polynomial degrees. Using the new technique as a building block for a preconditioned conjugate gradient method yields linear scaling of the runtime with N which is demonstrated for polynomial degrees from 2 to 32. This makes the spectral-element method cost effective even for low polynomial degrees. Moreover, the dependence of the iterative solution on the element aspect ratio is addressed, showing only a slight increase in the number of iterations for aspect ratios up to 128. Hence, the solver is very robust for practical applications.</description><subject>Aspect ratio</subject><subject>Computational physics</subject><subject>Conjugate gradient method</subject><subject>Dependence</subject><subject>Elliptic equations</subject><subject>Elliptic functions</subject><subject>Factorial experiments</subject><subject>Factorization</subject><subject>Iterative solution</subject><subject>Linear equations</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Polynomials</subject><subject>Spectra</subject><subject>Spectral element method</subject><subject>Static condensation</subject><subject>Studies</subject><subject>Substructuring</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMouK4-gLeA59ZJt0kbPMniqiB40XNI04mm1KYm2RU9-Q6-oU9idffsaRj4v3-Gj5BTBjkDJs67vDNjXgCrchA5sGKPzBhIyIqKiX0yAyhYJqVkh-Qoxg4Aal7WMzKstEk-uA83PNH0jNTudp2cH-j35xfVNI5oUtB9hj2-4JBo9P0GA7U-UOx7NyZnKL6u_5hI31x6pr0bUAfqRwzbKuPXQzomB1b3EU92c04eV1cPy5vs7v76dnl5l5lFwVNmBFvYtraywsY2TS1qI0Bry2zJjCwabLkoa9SoC94YW0NVWl7zSnLeGo7tYk7Otr1j8K9rjEl1fh2G6aQqQDDJy5LLKcW2KRN8jAGtGoN70eFdMVC_WlWnJq3qV6sCoSatE3OxZXB6f-MwqGgcDgZbFyZLqvXuH_oHP0mEHg</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Huismann, Immo</creator><creator>Stiller, Jörg</creator><creator>Fröhlich, Jochen</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20171001</creationdate><title>Factorizing the factorization – a spectral-element solver for elliptic equations with linear operation count</title><author>Huismann, Immo ; Stiller, Jörg ; Fröhlich, Jochen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-c613fd8f97ebfbb868c60aaf1f41c92bed5648eaea25bcf8074f5857955dc5ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aspect ratio</topic><topic>Computational physics</topic><topic>Conjugate gradient method</topic><topic>Dependence</topic><topic>Elliptic equations</topic><topic>Elliptic functions</topic><topic>Factorial experiments</topic><topic>Factorization</topic><topic>Iterative solution</topic><topic>Linear equations</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Polynomials</topic><topic>Spectra</topic><topic>Spectral element method</topic><topic>Static condensation</topic><topic>Studies</topic><topic>Substructuring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huismann, Immo</creatorcontrib><creatorcontrib>Stiller, Jörg</creatorcontrib><creatorcontrib>Fröhlich, Jochen</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huismann, Immo</au><au>Stiller, Jörg</au><au>Fröhlich, Jochen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Factorizing the factorization – a spectral-element solver for elliptic equations with linear operation count</atitle><jtitle>Journal of computational physics</jtitle><date>2017-10-01</date><risdate>2017</risdate><volume>346</volume><spage>437</spage><epage>448</epage><pages>437-448</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>The paper proposes a novel factorization technique for static condensation of a spectral-element discretization matrix that yields a linear operation count of just 13N multiplications for the residual evaluation, where N is the total number of unknowns. In comparison to previous work it saves a factor larger than 3 and outpaces unfactored variants for all polynomial degrees. Using the new technique as a building block for a preconditioned conjugate gradient method yields linear scaling of the runtime with N which is demonstrated for polynomial degrees from 2 to 32. This makes the spectral-element method cost effective even for low polynomial degrees. Moreover, the dependence of the iterative solution on the element aspect ratio is addressed, showing only a slight increase in the number of iterations for aspect ratios up to 128. Hence, the solver is very robust for practical applications.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2017.06.012</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2017-10, Vol.346, p.437-448
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_journals_2061954459
source Elsevier ScienceDirect Journals
subjects Aspect ratio
Computational physics
Conjugate gradient method
Dependence
Elliptic equations
Elliptic functions
Factorial experiments
Factorization
Iterative solution
Linear equations
Mathematical analysis
Matrix methods
Polynomials
Spectra
Spectral element method
Static condensation
Studies
Substructuring
title Factorizing the factorization – a spectral-element solver for elliptic equations with linear operation count
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T22%3A23%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Factorizing%20the%20factorization%20%E2%80%93%20a%20spectral-element%20solver%20for%20elliptic%20equations%20with%20linear%20operation%20count&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Huismann,%20Immo&rft.date=2017-10-01&rft.volume=346&rft.spage=437&rft.epage=448&rft.pages=437-448&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2017.06.012&rft_dat=%3Cproquest_cross%3E2061954459%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2061954459&rft_id=info:pmid/&rft_els_id=S0021999117304576&rfr_iscdi=true