Factorizing the factorization – a spectral-element solver for elliptic equations with linear operation count
The paper proposes a novel factorization technique for static condensation of a spectral-element discretization matrix that yields a linear operation count of just 13N multiplications for the residual evaluation, where N is the total number of unknowns. In comparison to previous work it saves a fact...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2017-10, Vol.346, p.437-448 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 448 |
---|---|
container_issue | |
container_start_page | 437 |
container_title | Journal of computational physics |
container_volume | 346 |
creator | Huismann, Immo Stiller, Jörg Fröhlich, Jochen |
description | The paper proposes a novel factorization technique for static condensation of a spectral-element discretization matrix that yields a linear operation count of just 13N multiplications for the residual evaluation, where N is the total number of unknowns. In comparison to previous work it saves a factor larger than 3 and outpaces unfactored variants for all polynomial degrees. Using the new technique as a building block for a preconditioned conjugate gradient method yields linear scaling of the runtime with N which is demonstrated for polynomial degrees from 2 to 32. This makes the spectral-element method cost effective even for low polynomial degrees. Moreover, the dependence of the iterative solution on the element aspect ratio is addressed, showing only a slight increase in the number of iterations for aspect ratios up to 128. Hence, the solver is very robust for practical applications. |
doi_str_mv | 10.1016/j.jcp.2017.06.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2061954459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999117304576</els_id><sourcerecordid>2061954459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-c613fd8f97ebfbb868c60aaf1f41c92bed5648eaea25bcf8074f5857955dc5ed3</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK4-gLeA59ZJt0kbPMniqiB40XNI04mm1KYm2RU9-Q6-oU9idffsaRj4v3-Gj5BTBjkDJs67vDNjXgCrchA5sGKPzBhIyIqKiX0yAyhYJqVkh-Qoxg4Aal7WMzKstEk-uA83PNH0jNTudp2cH-j35xfVNI5oUtB9hj2-4JBo9P0GA7U-UOx7NyZnKL6u_5hI31x6pr0bUAfqRwzbKuPXQzomB1b3EU92c04eV1cPy5vs7v76dnl5l5lFwVNmBFvYtraywsY2TS1qI0Bry2zJjCwabLkoa9SoC94YW0NVWl7zSnLeGo7tYk7Otr1j8K9rjEl1fh2G6aQqQDDJy5LLKcW2KRN8jAGtGoN70eFdMVC_WlWnJq3qV6sCoSatE3OxZXB6f-MwqGgcDgZbFyZLqvXuH_oHP0mEHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2061954459</pqid></control><display><type>article</type><title>Factorizing the factorization – a spectral-element solver for elliptic equations with linear operation count</title><source>Elsevier ScienceDirect Journals</source><creator>Huismann, Immo ; Stiller, Jörg ; Fröhlich, Jochen</creator><creatorcontrib>Huismann, Immo ; Stiller, Jörg ; Fröhlich, Jochen</creatorcontrib><description>The paper proposes a novel factorization technique for static condensation of a spectral-element discretization matrix that yields a linear operation count of just 13N multiplications for the residual evaluation, where N is the total number of unknowns. In comparison to previous work it saves a factor larger than 3 and outpaces unfactored variants for all polynomial degrees. Using the new technique as a building block for a preconditioned conjugate gradient method yields linear scaling of the runtime with N which is demonstrated for polynomial degrees from 2 to 32. This makes the spectral-element method cost effective even for low polynomial degrees. Moreover, the dependence of the iterative solution on the element aspect ratio is addressed, showing only a slight increase in the number of iterations for aspect ratios up to 128. Hence, the solver is very robust for practical applications.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2017.06.012</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Aspect ratio ; Computational physics ; Conjugate gradient method ; Dependence ; Elliptic equations ; Elliptic functions ; Factorial experiments ; Factorization ; Iterative solution ; Linear equations ; Mathematical analysis ; Matrix methods ; Polynomials ; Spectra ; Spectral element method ; Static condensation ; Studies ; Substructuring</subject><ispartof>Journal of computational physics, 2017-10, Vol.346, p.437-448</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Oct 1, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-c613fd8f97ebfbb868c60aaf1f41c92bed5648eaea25bcf8074f5857955dc5ed3</citedby><cites>FETCH-LOGICAL-c325t-c613fd8f97ebfbb868c60aaf1f41c92bed5648eaea25bcf8074f5857955dc5ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021999117304576$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Huismann, Immo</creatorcontrib><creatorcontrib>Stiller, Jörg</creatorcontrib><creatorcontrib>Fröhlich, Jochen</creatorcontrib><title>Factorizing the factorization – a spectral-element solver for elliptic equations with linear operation count</title><title>Journal of computational physics</title><description>The paper proposes a novel factorization technique for static condensation of a spectral-element discretization matrix that yields a linear operation count of just 13N multiplications for the residual evaluation, where N is the total number of unknowns. In comparison to previous work it saves a factor larger than 3 and outpaces unfactored variants for all polynomial degrees. Using the new technique as a building block for a preconditioned conjugate gradient method yields linear scaling of the runtime with N which is demonstrated for polynomial degrees from 2 to 32. This makes the spectral-element method cost effective even for low polynomial degrees. Moreover, the dependence of the iterative solution on the element aspect ratio is addressed, showing only a slight increase in the number of iterations for aspect ratios up to 128. Hence, the solver is very robust for practical applications.</description><subject>Aspect ratio</subject><subject>Computational physics</subject><subject>Conjugate gradient method</subject><subject>Dependence</subject><subject>Elliptic equations</subject><subject>Elliptic functions</subject><subject>Factorial experiments</subject><subject>Factorization</subject><subject>Iterative solution</subject><subject>Linear equations</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Polynomials</subject><subject>Spectra</subject><subject>Spectral element method</subject><subject>Static condensation</subject><subject>Studies</subject><subject>Substructuring</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMouK4-gLeA59ZJt0kbPMniqiB40XNI04mm1KYm2RU9-Q6-oU9idffsaRj4v3-Gj5BTBjkDJs67vDNjXgCrchA5sGKPzBhIyIqKiX0yAyhYJqVkh-Qoxg4Aal7WMzKstEk-uA83PNH0jNTudp2cH-j35xfVNI5oUtB9hj2-4JBo9P0GA7U-UOx7NyZnKL6u_5hI31x6pr0bUAfqRwzbKuPXQzomB1b3EU92c04eV1cPy5vs7v76dnl5l5lFwVNmBFvYtraywsY2TS1qI0Bry2zJjCwabLkoa9SoC94YW0NVWl7zSnLeGo7tYk7Otr1j8K9rjEl1fh2G6aQqQDDJy5LLKcW2KRN8jAGtGoN70eFdMVC_WlWnJq3qV6sCoSatE3OxZXB6f-MwqGgcDgZbFyZLqvXuH_oHP0mEHg</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Huismann, Immo</creator><creator>Stiller, Jörg</creator><creator>Fröhlich, Jochen</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20171001</creationdate><title>Factorizing the factorization – a spectral-element solver for elliptic equations with linear operation count</title><author>Huismann, Immo ; Stiller, Jörg ; Fröhlich, Jochen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-c613fd8f97ebfbb868c60aaf1f41c92bed5648eaea25bcf8074f5857955dc5ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aspect ratio</topic><topic>Computational physics</topic><topic>Conjugate gradient method</topic><topic>Dependence</topic><topic>Elliptic equations</topic><topic>Elliptic functions</topic><topic>Factorial experiments</topic><topic>Factorization</topic><topic>Iterative solution</topic><topic>Linear equations</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Polynomials</topic><topic>Spectra</topic><topic>Spectral element method</topic><topic>Static condensation</topic><topic>Studies</topic><topic>Substructuring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huismann, Immo</creatorcontrib><creatorcontrib>Stiller, Jörg</creatorcontrib><creatorcontrib>Fröhlich, Jochen</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huismann, Immo</au><au>Stiller, Jörg</au><au>Fröhlich, Jochen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Factorizing the factorization – a spectral-element solver for elliptic equations with linear operation count</atitle><jtitle>Journal of computational physics</jtitle><date>2017-10-01</date><risdate>2017</risdate><volume>346</volume><spage>437</spage><epage>448</epage><pages>437-448</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>The paper proposes a novel factorization technique for static condensation of a spectral-element discretization matrix that yields a linear operation count of just 13N multiplications for the residual evaluation, where N is the total number of unknowns. In comparison to previous work it saves a factor larger than 3 and outpaces unfactored variants for all polynomial degrees. Using the new technique as a building block for a preconditioned conjugate gradient method yields linear scaling of the runtime with N which is demonstrated for polynomial degrees from 2 to 32. This makes the spectral-element method cost effective even for low polynomial degrees. Moreover, the dependence of the iterative solution on the element aspect ratio is addressed, showing only a slight increase in the number of iterations for aspect ratios up to 128. Hence, the solver is very robust for practical applications.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2017.06.012</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2017-10, Vol.346, p.437-448 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_journals_2061954459 |
source | Elsevier ScienceDirect Journals |
subjects | Aspect ratio Computational physics Conjugate gradient method Dependence Elliptic equations Elliptic functions Factorial experiments Factorization Iterative solution Linear equations Mathematical analysis Matrix methods Polynomials Spectra Spectral element method Static condensation Studies Substructuring |
title | Factorizing the factorization – a spectral-element solver for elliptic equations with linear operation count |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T22%3A23%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Factorizing%20the%20factorization%20%E2%80%93%20a%20spectral-element%20solver%20for%20elliptic%20equations%20with%20linear%20operation%20count&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Huismann,%20Immo&rft.date=2017-10-01&rft.volume=346&rft.spage=437&rft.epage=448&rft.pages=437-448&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2017.06.012&rft_dat=%3Cproquest_cross%3E2061954459%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2061954459&rft_id=info:pmid/&rft_els_id=S0021999117304576&rfr_iscdi=true |