Linear Quaternion Differential Equations: Basic Theory and Fundamental Results
Quaternion‐valued differential equations (QDEs) are a new kind of differential equations which have many applications in physics and life sciences. The largest difference between QDEs and ordinary differential equations (ODEs) is the algebraic structure. Due to the noncommutativity of the quaternion...
Gespeichert in:
Veröffentlicht in: | Studies in applied mathematics (Cambridge) 2018-07, Vol.141 (1), p.3-45 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 45 |
---|---|
container_issue | 1 |
container_start_page | 3 |
container_title | Studies in applied mathematics (Cambridge) |
container_volume | 141 |
creator | Kou, Kit Ian Xia, Yong‐Hui |
description | Quaternion‐valued differential equations (QDEs) are a new kind of differential equations which have many applications in physics and life sciences. The largest difference between QDEs and ordinary differential equations (ODEs) is the algebraic structure. Due to the noncommutativity of the quaternion algebra, the set of all the solutions to the linear homogenous QDEs is completely different from ODEs. It is actually a right‐free module, not a linear vector space.
This paper establishes a systematic frame work for the theory of linear QDEs, which can be applied to quantum mechanics, fluid mechanics, Frenet frame in differential geometry, kinematic modeling, attitude dynamics, Kalman filter design, spatial rigid body dynamics, etc. We prove that the set of all the solutions to the linear homogenous QDEs is actually a right‐free module, not a linear vector space. On the noncommutativity of the quaternion algebra, many concepts and properties for the ODEs cannot be used. They should be redefined accordingly. A definition of Wronskian is introduced under the framework of quaternions which is different from standard one in the ODEs. Liouville formula for QDEs is given. Also, it is necessary to treat the eigenvalue problems with left and right sides, accordingly. Upon these, we studied the solutions to the linear QDEs. Furthermore, we present two algorithms to evaluate the fundamental matrix. Some concrete examples are given to show the feasibility of the obtained algorithms. Finally, a conclusion and discussion ends the paper. |
doi_str_mv | 10.1111/sapm.12211 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2061731048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2061731048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3011-d4c9acf4cd758e94564f22c60fb2c90d6cbf069eace8a8102501b479a665d18d3</originalsourceid><addsrcrecordid>eNp90N9LwzAQB_AgCs7pi39BwDeh8y5r0sa3qZsK8_d8DlmaYEfXbkmL7L83sz6bl4Pc5-7gS8g5wgjjuwp6sx4hY4gHZICpyBLJJRySAQBjCeNMHJOTEFYAgBmHAXmel7XVnr51urW-Lpua3pXOWW_rttQVnW5jI_6Ga3qjQ2no4ss2fkd1XdBZVxd6HWF07zZ0VRtOyZHTVbBnf3VIPmfTxe1DMn-5f7ydzBMzBsSkSI3UxqWmyHhuZcpF6hgzAtySGQmFMEsHQlptbK5zBMYBl2kmtRC8wLwYD8lFv3fjm21nQ6tWTefreFIxEJiNEdI8qsteGd-E4K1TG1-utd8pBLXPS-3zUr95RYw9_i4ru_tHqo_J61M_8wNSH21J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2061731048</pqid></control><display><type>article</type><title>Linear Quaternion Differential Equations: Basic Theory and Fundamental Results</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><creator>Kou, Kit Ian ; Xia, Yong‐Hui</creator><creatorcontrib>Kou, Kit Ian ; Xia, Yong‐Hui</creatorcontrib><description>Quaternion‐valued differential equations (QDEs) are a new kind of differential equations which have many applications in physics and life sciences. The largest difference between QDEs and ordinary differential equations (ODEs) is the algebraic structure. Due to the noncommutativity of the quaternion algebra, the set of all the solutions to the linear homogenous QDEs is completely different from ODEs. It is actually a right‐free module, not a linear vector space.
This paper establishes a systematic frame work for the theory of linear QDEs, which can be applied to quantum mechanics, fluid mechanics, Frenet frame in differential geometry, kinematic modeling, attitude dynamics, Kalman filter design, spatial rigid body dynamics, etc. We prove that the set of all the solutions to the linear homogenous QDEs is actually a right‐free module, not a linear vector space. On the noncommutativity of the quaternion algebra, many concepts and properties for the ODEs cannot be used. They should be redefined accordingly. A definition of Wronskian is introduced under the framework of quaternions which is different from standard one in the ODEs. Liouville formula for QDEs is given. Also, it is necessary to treat the eigenvalue problems with left and right sides, accordingly. Upon these, we studied the solutions to the linear QDEs. Furthermore, we present two algorithms to evaluate the fundamental matrix. Some concrete examples are given to show the feasibility of the obtained algorithms. Finally, a conclusion and discussion ends the paper.</description><identifier>ISSN: 0022-2526</identifier><identifier>EISSN: 1467-9590</identifier><identifier>DOI: 10.1111/sapm.12211</identifier><language>eng</language><publisher>Cambridge: Blackwell Publishing Ltd</publisher><subject>Algebra ; Algorithms ; Computational fluid dynamics ; Differential equations ; Differential geometry ; Eigenvalues ; Filter design (mathematics) ; Fluid mechanics ; Kalman filters ; Matrix methods ; Ordinary differential equations ; Quantum mechanics ; Quaternions ; Rigid-body dynamics</subject><ispartof>Studies in applied mathematics (Cambridge), 2018-07, Vol.141 (1), p.3-45</ispartof><rights>2018 Wiley Periodicals, Inc., A Wiley Company</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3011-d4c9acf4cd758e94564f22c60fb2c90d6cbf069eace8a8102501b479a665d18d3</citedby><cites>FETCH-LOGICAL-c3011-d4c9acf4cd758e94564f22c60fb2c90d6cbf069eace8a8102501b479a665d18d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fsapm.12211$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fsapm.12211$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Kou, Kit Ian</creatorcontrib><creatorcontrib>Xia, Yong‐Hui</creatorcontrib><title>Linear Quaternion Differential Equations: Basic Theory and Fundamental Results</title><title>Studies in applied mathematics (Cambridge)</title><description>Quaternion‐valued differential equations (QDEs) are a new kind of differential equations which have many applications in physics and life sciences. The largest difference between QDEs and ordinary differential equations (ODEs) is the algebraic structure. Due to the noncommutativity of the quaternion algebra, the set of all the solutions to the linear homogenous QDEs is completely different from ODEs. It is actually a right‐free module, not a linear vector space.
This paper establishes a systematic frame work for the theory of linear QDEs, which can be applied to quantum mechanics, fluid mechanics, Frenet frame in differential geometry, kinematic modeling, attitude dynamics, Kalman filter design, spatial rigid body dynamics, etc. We prove that the set of all the solutions to the linear homogenous QDEs is actually a right‐free module, not a linear vector space. On the noncommutativity of the quaternion algebra, many concepts and properties for the ODEs cannot be used. They should be redefined accordingly. A definition of Wronskian is introduced under the framework of quaternions which is different from standard one in the ODEs. Liouville formula for QDEs is given. Also, it is necessary to treat the eigenvalue problems with left and right sides, accordingly. Upon these, we studied the solutions to the linear QDEs. Furthermore, we present two algorithms to evaluate the fundamental matrix. Some concrete examples are given to show the feasibility of the obtained algorithms. Finally, a conclusion and discussion ends the paper.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Computational fluid dynamics</subject><subject>Differential equations</subject><subject>Differential geometry</subject><subject>Eigenvalues</subject><subject>Filter design (mathematics)</subject><subject>Fluid mechanics</subject><subject>Kalman filters</subject><subject>Matrix methods</subject><subject>Ordinary differential equations</subject><subject>Quantum mechanics</subject><subject>Quaternions</subject><subject>Rigid-body dynamics</subject><issn>0022-2526</issn><issn>1467-9590</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90N9LwzAQB_AgCs7pi39BwDeh8y5r0sa3qZsK8_d8DlmaYEfXbkmL7L83sz6bl4Pc5-7gS8g5wgjjuwp6sx4hY4gHZICpyBLJJRySAQBjCeNMHJOTEFYAgBmHAXmel7XVnr51urW-Lpua3pXOWW_rttQVnW5jI_6Ga3qjQ2no4ss2fkd1XdBZVxd6HWF07zZ0VRtOyZHTVbBnf3VIPmfTxe1DMn-5f7ydzBMzBsSkSI3UxqWmyHhuZcpF6hgzAtySGQmFMEsHQlptbK5zBMYBl2kmtRC8wLwYD8lFv3fjm21nQ6tWTefreFIxEJiNEdI8qsteGd-E4K1TG1-utd8pBLXPS-3zUr95RYw9_i4ru_tHqo_J61M_8wNSH21J</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Kou, Kit Ian</creator><creator>Xia, Yong‐Hui</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>201807</creationdate><title>Linear Quaternion Differential Equations: Basic Theory and Fundamental Results</title><author>Kou, Kit Ian ; Xia, Yong‐Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3011-d4c9acf4cd758e94564f22c60fb2c90d6cbf069eace8a8102501b479a665d18d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Computational fluid dynamics</topic><topic>Differential equations</topic><topic>Differential geometry</topic><topic>Eigenvalues</topic><topic>Filter design (mathematics)</topic><topic>Fluid mechanics</topic><topic>Kalman filters</topic><topic>Matrix methods</topic><topic>Ordinary differential equations</topic><topic>Quantum mechanics</topic><topic>Quaternions</topic><topic>Rigid-body dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kou, Kit Ian</creatorcontrib><creatorcontrib>Xia, Yong‐Hui</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Studies in applied mathematics (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kou, Kit Ian</au><au>Xia, Yong‐Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear Quaternion Differential Equations: Basic Theory and Fundamental Results</atitle><jtitle>Studies in applied mathematics (Cambridge)</jtitle><date>2018-07</date><risdate>2018</risdate><volume>141</volume><issue>1</issue><spage>3</spage><epage>45</epage><pages>3-45</pages><issn>0022-2526</issn><eissn>1467-9590</eissn><abstract>Quaternion‐valued differential equations (QDEs) are a new kind of differential equations which have many applications in physics and life sciences. The largest difference between QDEs and ordinary differential equations (ODEs) is the algebraic structure. Due to the noncommutativity of the quaternion algebra, the set of all the solutions to the linear homogenous QDEs is completely different from ODEs. It is actually a right‐free module, not a linear vector space.
This paper establishes a systematic frame work for the theory of linear QDEs, which can be applied to quantum mechanics, fluid mechanics, Frenet frame in differential geometry, kinematic modeling, attitude dynamics, Kalman filter design, spatial rigid body dynamics, etc. We prove that the set of all the solutions to the linear homogenous QDEs is actually a right‐free module, not a linear vector space. On the noncommutativity of the quaternion algebra, many concepts and properties for the ODEs cannot be used. They should be redefined accordingly. A definition of Wronskian is introduced under the framework of quaternions which is different from standard one in the ODEs. Liouville formula for QDEs is given. Also, it is necessary to treat the eigenvalue problems with left and right sides, accordingly. Upon these, we studied the solutions to the linear QDEs. Furthermore, we present two algorithms to evaluate the fundamental matrix. Some concrete examples are given to show the feasibility of the obtained algorithms. Finally, a conclusion and discussion ends the paper.</abstract><cop>Cambridge</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/sapm.12211</doi><tpages>43</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2526 |
ispartof | Studies in applied mathematics (Cambridge), 2018-07, Vol.141 (1), p.3-45 |
issn | 0022-2526 1467-9590 |
language | eng |
recordid | cdi_proquest_journals_2061731048 |
source | Wiley Online Library Journals Frontfile Complete; Business Source Complete |
subjects | Algebra Algorithms Computational fluid dynamics Differential equations Differential geometry Eigenvalues Filter design (mathematics) Fluid mechanics Kalman filters Matrix methods Ordinary differential equations Quantum mechanics Quaternions Rigid-body dynamics |
title | Linear Quaternion Differential Equations: Basic Theory and Fundamental Results |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T00%3A11%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20Quaternion%20Differential%20Equations:%20Basic%20Theory%20and%20Fundamental%20Results&rft.jtitle=Studies%20in%20applied%20mathematics%20(Cambridge)&rft.au=Kou,%20Kit%20Ian&rft.date=2018-07&rft.volume=141&rft.issue=1&rft.spage=3&rft.epage=45&rft.pages=3-45&rft.issn=0022-2526&rft.eissn=1467-9590&rft_id=info:doi/10.1111/sapm.12211&rft_dat=%3Cproquest_cross%3E2061731048%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2061731048&rft_id=info:pmid/&rfr_iscdi=true |