Obtaining phase velocity of turbulent boundary layer pressure fluctuations at high subsonic Mach number from wind tunnel data affected by strong background noise

Boundary layer measurements at high subsonic Mach number are evaluated in order to obtain the dominant phase velocities of boundary layer pressure fluctuations. The measurements were performed in a transonic wind tunnel which had a very strong background noise. The phase velocity was taken from phas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sound and vibration 2017-08, Vol.402, p.85-103
Hauptverfasser: Haxter, Stefan, Brouwer, Jens, Sesterhenn, Jörn, Spehr, Carsten
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 103
container_issue
container_start_page 85
container_title Journal of sound and vibration
container_volume 402
creator Haxter, Stefan
Brouwer, Jens
Sesterhenn, Jörn
Spehr, Carsten
description Boundary layer measurements at high subsonic Mach number are evaluated in order to obtain the dominant phase velocities of boundary layer pressure fluctuations. The measurements were performed in a transonic wind tunnel which had a very strong background noise. The phase velocity was taken from phase inclination and from the convective peak in one- and two-dimensional wavenumber spectra. An approach was introduced to remove the acoustic noise from the data by applying a method based on CLEAN-SC on the two-dimensional spectra, thereby increasing the frequency range where information about the boundary layer was retrievable. A comparison with prediction models showed some discrepancies in the low-frequency range. Therefore, pressure data from a DNS calculation was used to substantiate the results of the analysis in this frequency range. Using the measured data, the DNS results and a review of the models used for comparison it was found that the phase velocity decreases at low frequencies.
doi_str_mv 10.1016/j.jsv.2017.05.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2061520401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X17303905</els_id><sourcerecordid>2061520401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-e9b1d0d239a148a8d1d494a8ac82ae3df063d11269b505f35c758ce922736a2a3</originalsourceid><addsrcrecordid>eNp9kc2O1DAQhCMEEsOyD8DNEudk206cScQJrfhZadFeQNqb1bE7Mw4Ze_DPoHkc3hSPhjOnvtTXVd1VVe84NBx4f7c0Szw1Avi2AdkA5y-qDYdR1oPsh5fVBkCIuuvh-XX1JsYFAMau7TbVn6cpoXXW7dhxj5HYiVavbTozP7OUw5RXcolNPjuD4cxWPFNgx0Ax5kBsXrNOGZP1LjJMbG93exbzFL2zmn1DvWcuH6aCzMEf2G_rTNnqHK3MYEKG80w6kWHTmcUUfIkxof65Cxc_5ryN9LZ6NeMa6fbfvKl-fP70_f5r_fj05eH-42OtWyFTTePEDRjRjsi7AQfDTTd2OKAeBFJrZuhbw7nox0mCnFupt3LQNAqxbXsU2N5U7697j8H_yhSTWnwOrlgqAT2XAjrgRcWvKh18jIFmdQz2UD6jOKhLE2pRpQl1aUKBVKWJwny4MlTinywFFbUlp8nYUK5Xxtv_0H8BoFiVQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2061520401</pqid></control><display><type>article</type><title>Obtaining phase velocity of turbulent boundary layer pressure fluctuations at high subsonic Mach number from wind tunnel data affected by strong background noise</title><source>Access via ScienceDirect (Elsevier)</source><creator>Haxter, Stefan ; Brouwer, Jens ; Sesterhenn, Jörn ; Spehr, Carsten</creator><creatorcontrib>Haxter, Stefan ; Brouwer, Jens ; Sesterhenn, Jörn ; Spehr, Carsten</creatorcontrib><description>Boundary layer measurements at high subsonic Mach number are evaluated in order to obtain the dominant phase velocities of boundary layer pressure fluctuations. The measurements were performed in a transonic wind tunnel which had a very strong background noise. The phase velocity was taken from phase inclination and from the convective peak in one- and two-dimensional wavenumber spectra. An approach was introduced to remove the acoustic noise from the data by applying a method based on CLEAN-SC on the two-dimensional spectra, thereby increasing the frequency range where information about the boundary layer was retrievable. A comparison with prediction models showed some discrepancies in the low-frequency range. Therefore, pressure data from a DNS calculation was used to substantiate the results of the analysis in this frequency range. Using the measured data, the DNS results and a review of the models used for comparison it was found that the phase velocity decreases at low frequencies.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2017.05.011</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Acoustic noise ; Acoustic phase velocity ; Background noise ; Boundary layer ; CLEAN-SC ; Frequencies ; Hydrodynamic phase velocity ; Inclination ; Mach number ; Model comparison ; Phase velocity ; Rangefinding ; Studies ; Turbulent boundary layer ; Variation ; Velocity ; Vibration ; Wavelengths ; Wind tunnels</subject><ispartof>Journal of sound and vibration, 2017-08, Vol.402, p.85-103</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Aug 18, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-e9b1d0d239a148a8d1d494a8ac82ae3df063d11269b505f35c758ce922736a2a3</citedby><cites>FETCH-LOGICAL-c325t-e9b1d0d239a148a8d1d494a8ac82ae3df063d11269b505f35c758ce922736a2a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jsv.2017.05.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Haxter, Stefan</creatorcontrib><creatorcontrib>Brouwer, Jens</creatorcontrib><creatorcontrib>Sesterhenn, Jörn</creatorcontrib><creatorcontrib>Spehr, Carsten</creatorcontrib><title>Obtaining phase velocity of turbulent boundary layer pressure fluctuations at high subsonic Mach number from wind tunnel data affected by strong background noise</title><title>Journal of sound and vibration</title><description>Boundary layer measurements at high subsonic Mach number are evaluated in order to obtain the dominant phase velocities of boundary layer pressure fluctuations. The measurements were performed in a transonic wind tunnel which had a very strong background noise. The phase velocity was taken from phase inclination and from the convective peak in one- and two-dimensional wavenumber spectra. An approach was introduced to remove the acoustic noise from the data by applying a method based on CLEAN-SC on the two-dimensional spectra, thereby increasing the frequency range where information about the boundary layer was retrievable. A comparison with prediction models showed some discrepancies in the low-frequency range. Therefore, pressure data from a DNS calculation was used to substantiate the results of the analysis in this frequency range. Using the measured data, the DNS results and a review of the models used for comparison it was found that the phase velocity decreases at low frequencies.</description><subject>Acoustic noise</subject><subject>Acoustic phase velocity</subject><subject>Background noise</subject><subject>Boundary layer</subject><subject>CLEAN-SC</subject><subject>Frequencies</subject><subject>Hydrodynamic phase velocity</subject><subject>Inclination</subject><subject>Mach number</subject><subject>Model comparison</subject><subject>Phase velocity</subject><subject>Rangefinding</subject><subject>Studies</subject><subject>Turbulent boundary layer</subject><subject>Variation</subject><subject>Velocity</subject><subject>Vibration</subject><subject>Wavelengths</subject><subject>Wind tunnels</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kc2O1DAQhCMEEsOyD8DNEudk206cScQJrfhZadFeQNqb1bE7Mw4Ze_DPoHkc3hSPhjOnvtTXVd1VVe84NBx4f7c0Szw1Avi2AdkA5y-qDYdR1oPsh5fVBkCIuuvh-XX1JsYFAMau7TbVn6cpoXXW7dhxj5HYiVavbTozP7OUw5RXcolNPjuD4cxWPFNgx0Ax5kBsXrNOGZP1LjJMbG93exbzFL2zmn1DvWcuH6aCzMEf2G_rTNnqHK3MYEKG80w6kWHTmcUUfIkxof65Cxc_5ryN9LZ6NeMa6fbfvKl-fP70_f5r_fj05eH-42OtWyFTTePEDRjRjsi7AQfDTTd2OKAeBFJrZuhbw7nox0mCnFupt3LQNAqxbXsU2N5U7697j8H_yhSTWnwOrlgqAT2XAjrgRcWvKh18jIFmdQz2UD6jOKhLE2pRpQl1aUKBVKWJwny4MlTinywFFbUlp8nYUK5Xxtv_0H8BoFiVQg</recordid><startdate>20170818</startdate><enddate>20170818</enddate><creator>Haxter, Stefan</creator><creator>Brouwer, Jens</creator><creator>Sesterhenn, Jörn</creator><creator>Spehr, Carsten</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20170818</creationdate><title>Obtaining phase velocity of turbulent boundary layer pressure fluctuations at high subsonic Mach number from wind tunnel data affected by strong background noise</title><author>Haxter, Stefan ; Brouwer, Jens ; Sesterhenn, Jörn ; Spehr, Carsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-e9b1d0d239a148a8d1d494a8ac82ae3df063d11269b505f35c758ce922736a2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acoustic noise</topic><topic>Acoustic phase velocity</topic><topic>Background noise</topic><topic>Boundary layer</topic><topic>CLEAN-SC</topic><topic>Frequencies</topic><topic>Hydrodynamic phase velocity</topic><topic>Inclination</topic><topic>Mach number</topic><topic>Model comparison</topic><topic>Phase velocity</topic><topic>Rangefinding</topic><topic>Studies</topic><topic>Turbulent boundary layer</topic><topic>Variation</topic><topic>Velocity</topic><topic>Vibration</topic><topic>Wavelengths</topic><topic>Wind tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haxter, Stefan</creatorcontrib><creatorcontrib>Brouwer, Jens</creatorcontrib><creatorcontrib>Sesterhenn, Jörn</creatorcontrib><creatorcontrib>Spehr, Carsten</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haxter, Stefan</au><au>Brouwer, Jens</au><au>Sesterhenn, Jörn</au><au>Spehr, Carsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Obtaining phase velocity of turbulent boundary layer pressure fluctuations at high subsonic Mach number from wind tunnel data affected by strong background noise</atitle><jtitle>Journal of sound and vibration</jtitle><date>2017-08-18</date><risdate>2017</risdate><volume>402</volume><spage>85</spage><epage>103</epage><pages>85-103</pages><issn>0022-460X</issn><eissn>1095-8568</eissn><abstract>Boundary layer measurements at high subsonic Mach number are evaluated in order to obtain the dominant phase velocities of boundary layer pressure fluctuations. The measurements were performed in a transonic wind tunnel which had a very strong background noise. The phase velocity was taken from phase inclination and from the convective peak in one- and two-dimensional wavenumber spectra. An approach was introduced to remove the acoustic noise from the data by applying a method based on CLEAN-SC on the two-dimensional spectra, thereby increasing the frequency range where information about the boundary layer was retrievable. A comparison with prediction models showed some discrepancies in the low-frequency range. Therefore, pressure data from a DNS calculation was used to substantiate the results of the analysis in this frequency range. Using the measured data, the DNS results and a review of the models used for comparison it was found that the phase velocity decreases at low frequencies.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2017.05.011</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-460X
ispartof Journal of sound and vibration, 2017-08, Vol.402, p.85-103
issn 0022-460X
1095-8568
language eng
recordid cdi_proquest_journals_2061520401
source Access via ScienceDirect (Elsevier)
subjects Acoustic noise
Acoustic phase velocity
Background noise
Boundary layer
CLEAN-SC
Frequencies
Hydrodynamic phase velocity
Inclination
Mach number
Model comparison
Phase velocity
Rangefinding
Studies
Turbulent boundary layer
Variation
Velocity
Vibration
Wavelengths
Wind tunnels
title Obtaining phase velocity of turbulent boundary layer pressure fluctuations at high subsonic Mach number from wind tunnel data affected by strong background noise
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A55%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Obtaining%20phase%20velocity%20of%20turbulent%20boundary%20layer%20pressure%20fluctuations%20at%20high%20subsonic%20Mach%20number%20from%20wind%20tunnel%20data%20affected%20by%20strong%20background%20noise&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Haxter,%20Stefan&rft.date=2017-08-18&rft.volume=402&rft.spage=85&rft.epage=103&rft.pages=85-103&rft.issn=0022-460X&rft.eissn=1095-8568&rft_id=info:doi/10.1016/j.jsv.2017.05.011&rft_dat=%3Cproquest_cross%3E2061520401%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2061520401&rft_id=info:pmid/&rft_els_id=S0022460X17303905&rfr_iscdi=true