Obtaining phase velocity of turbulent boundary layer pressure fluctuations at high subsonic Mach number from wind tunnel data affected by strong background noise
Boundary layer measurements at high subsonic Mach number are evaluated in order to obtain the dominant phase velocities of boundary layer pressure fluctuations. The measurements were performed in a transonic wind tunnel which had a very strong background noise. The phase velocity was taken from phas...
Gespeichert in:
Veröffentlicht in: | Journal of sound and vibration 2017-08, Vol.402, p.85-103 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 103 |
---|---|
container_issue | |
container_start_page | 85 |
container_title | Journal of sound and vibration |
container_volume | 402 |
creator | Haxter, Stefan Brouwer, Jens Sesterhenn, Jörn Spehr, Carsten |
description | Boundary layer measurements at high subsonic Mach number are evaluated in order to obtain the dominant phase velocities of boundary layer pressure fluctuations. The measurements were performed in a transonic wind tunnel which had a very strong background noise. The phase velocity was taken from phase inclination and from the convective peak in one- and two-dimensional wavenumber spectra. An approach was introduced to remove the acoustic noise from the data by applying a method based on CLEAN-SC on the two-dimensional spectra, thereby increasing the frequency range where information about the boundary layer was retrievable. A comparison with prediction models showed some discrepancies in the low-frequency range. Therefore, pressure data from a DNS calculation was used to substantiate the results of the analysis in this frequency range. Using the measured data, the DNS results and a review of the models used for comparison it was found that the phase velocity decreases at low frequencies. |
doi_str_mv | 10.1016/j.jsv.2017.05.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2061520401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X17303905</els_id><sourcerecordid>2061520401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-e9b1d0d239a148a8d1d494a8ac82ae3df063d11269b505f35c758ce922736a2a3</originalsourceid><addsrcrecordid>eNp9kc2O1DAQhCMEEsOyD8DNEudk206cScQJrfhZadFeQNqb1bE7Mw4Ze_DPoHkc3hSPhjOnvtTXVd1VVe84NBx4f7c0Szw1Avi2AdkA5y-qDYdR1oPsh5fVBkCIuuvh-XX1JsYFAMau7TbVn6cpoXXW7dhxj5HYiVavbTozP7OUw5RXcolNPjuD4cxWPFNgx0Ax5kBsXrNOGZP1LjJMbG93exbzFL2zmn1DvWcuH6aCzMEf2G_rTNnqHK3MYEKG80w6kWHTmcUUfIkxof65Cxc_5ryN9LZ6NeMa6fbfvKl-fP70_f5r_fj05eH-42OtWyFTTePEDRjRjsi7AQfDTTd2OKAeBFJrZuhbw7nox0mCnFupt3LQNAqxbXsU2N5U7697j8H_yhSTWnwOrlgqAT2XAjrgRcWvKh18jIFmdQz2UD6jOKhLE2pRpQl1aUKBVKWJwny4MlTinywFFbUlp8nYUK5Xxtv_0H8BoFiVQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2061520401</pqid></control><display><type>article</type><title>Obtaining phase velocity of turbulent boundary layer pressure fluctuations at high subsonic Mach number from wind tunnel data affected by strong background noise</title><source>Access via ScienceDirect (Elsevier)</source><creator>Haxter, Stefan ; Brouwer, Jens ; Sesterhenn, Jörn ; Spehr, Carsten</creator><creatorcontrib>Haxter, Stefan ; Brouwer, Jens ; Sesterhenn, Jörn ; Spehr, Carsten</creatorcontrib><description>Boundary layer measurements at high subsonic Mach number are evaluated in order to obtain the dominant phase velocities of boundary layer pressure fluctuations. The measurements were performed in a transonic wind tunnel which had a very strong background noise. The phase velocity was taken from phase inclination and from the convective peak in one- and two-dimensional wavenumber spectra. An approach was introduced to remove the acoustic noise from the data by applying a method based on CLEAN-SC on the two-dimensional spectra, thereby increasing the frequency range where information about the boundary layer was retrievable. A comparison with prediction models showed some discrepancies in the low-frequency range. Therefore, pressure data from a DNS calculation was used to substantiate the results of the analysis in this frequency range. Using the measured data, the DNS results and a review of the models used for comparison it was found that the phase velocity decreases at low frequencies.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2017.05.011</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Acoustic noise ; Acoustic phase velocity ; Background noise ; Boundary layer ; CLEAN-SC ; Frequencies ; Hydrodynamic phase velocity ; Inclination ; Mach number ; Model comparison ; Phase velocity ; Rangefinding ; Studies ; Turbulent boundary layer ; Variation ; Velocity ; Vibration ; Wavelengths ; Wind tunnels</subject><ispartof>Journal of sound and vibration, 2017-08, Vol.402, p.85-103</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Aug 18, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-e9b1d0d239a148a8d1d494a8ac82ae3df063d11269b505f35c758ce922736a2a3</citedby><cites>FETCH-LOGICAL-c325t-e9b1d0d239a148a8d1d494a8ac82ae3df063d11269b505f35c758ce922736a2a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jsv.2017.05.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Haxter, Stefan</creatorcontrib><creatorcontrib>Brouwer, Jens</creatorcontrib><creatorcontrib>Sesterhenn, Jörn</creatorcontrib><creatorcontrib>Spehr, Carsten</creatorcontrib><title>Obtaining phase velocity of turbulent boundary layer pressure fluctuations at high subsonic Mach number from wind tunnel data affected by strong background noise</title><title>Journal of sound and vibration</title><description>Boundary layer measurements at high subsonic Mach number are evaluated in order to obtain the dominant phase velocities of boundary layer pressure fluctuations. The measurements were performed in a transonic wind tunnel which had a very strong background noise. The phase velocity was taken from phase inclination and from the convective peak in one- and two-dimensional wavenumber spectra. An approach was introduced to remove the acoustic noise from the data by applying a method based on CLEAN-SC on the two-dimensional spectra, thereby increasing the frequency range where information about the boundary layer was retrievable. A comparison with prediction models showed some discrepancies in the low-frequency range. Therefore, pressure data from a DNS calculation was used to substantiate the results of the analysis in this frequency range. Using the measured data, the DNS results and a review of the models used for comparison it was found that the phase velocity decreases at low frequencies.</description><subject>Acoustic noise</subject><subject>Acoustic phase velocity</subject><subject>Background noise</subject><subject>Boundary layer</subject><subject>CLEAN-SC</subject><subject>Frequencies</subject><subject>Hydrodynamic phase velocity</subject><subject>Inclination</subject><subject>Mach number</subject><subject>Model comparison</subject><subject>Phase velocity</subject><subject>Rangefinding</subject><subject>Studies</subject><subject>Turbulent boundary layer</subject><subject>Variation</subject><subject>Velocity</subject><subject>Vibration</subject><subject>Wavelengths</subject><subject>Wind tunnels</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kc2O1DAQhCMEEsOyD8DNEudk206cScQJrfhZadFeQNqb1bE7Mw4Ze_DPoHkc3hSPhjOnvtTXVd1VVe84NBx4f7c0Szw1Avi2AdkA5y-qDYdR1oPsh5fVBkCIuuvh-XX1JsYFAMau7TbVn6cpoXXW7dhxj5HYiVavbTozP7OUw5RXcolNPjuD4cxWPFNgx0Ax5kBsXrNOGZP1LjJMbG93exbzFL2zmn1DvWcuH6aCzMEf2G_rTNnqHK3MYEKG80w6kWHTmcUUfIkxof65Cxc_5ryN9LZ6NeMa6fbfvKl-fP70_f5r_fj05eH-42OtWyFTTePEDRjRjsi7AQfDTTd2OKAeBFJrZuhbw7nox0mCnFupt3LQNAqxbXsU2N5U7697j8H_yhSTWnwOrlgqAT2XAjrgRcWvKh18jIFmdQz2UD6jOKhLE2pRpQl1aUKBVKWJwny4MlTinywFFbUlp8nYUK5Xxtv_0H8BoFiVQg</recordid><startdate>20170818</startdate><enddate>20170818</enddate><creator>Haxter, Stefan</creator><creator>Brouwer, Jens</creator><creator>Sesterhenn, Jörn</creator><creator>Spehr, Carsten</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20170818</creationdate><title>Obtaining phase velocity of turbulent boundary layer pressure fluctuations at high subsonic Mach number from wind tunnel data affected by strong background noise</title><author>Haxter, Stefan ; Brouwer, Jens ; Sesterhenn, Jörn ; Spehr, Carsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-e9b1d0d239a148a8d1d494a8ac82ae3df063d11269b505f35c758ce922736a2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acoustic noise</topic><topic>Acoustic phase velocity</topic><topic>Background noise</topic><topic>Boundary layer</topic><topic>CLEAN-SC</topic><topic>Frequencies</topic><topic>Hydrodynamic phase velocity</topic><topic>Inclination</topic><topic>Mach number</topic><topic>Model comparison</topic><topic>Phase velocity</topic><topic>Rangefinding</topic><topic>Studies</topic><topic>Turbulent boundary layer</topic><topic>Variation</topic><topic>Velocity</topic><topic>Vibration</topic><topic>Wavelengths</topic><topic>Wind tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haxter, Stefan</creatorcontrib><creatorcontrib>Brouwer, Jens</creatorcontrib><creatorcontrib>Sesterhenn, Jörn</creatorcontrib><creatorcontrib>Spehr, Carsten</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haxter, Stefan</au><au>Brouwer, Jens</au><au>Sesterhenn, Jörn</au><au>Spehr, Carsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Obtaining phase velocity of turbulent boundary layer pressure fluctuations at high subsonic Mach number from wind tunnel data affected by strong background noise</atitle><jtitle>Journal of sound and vibration</jtitle><date>2017-08-18</date><risdate>2017</risdate><volume>402</volume><spage>85</spage><epage>103</epage><pages>85-103</pages><issn>0022-460X</issn><eissn>1095-8568</eissn><abstract>Boundary layer measurements at high subsonic Mach number are evaluated in order to obtain the dominant phase velocities of boundary layer pressure fluctuations. The measurements were performed in a transonic wind tunnel which had a very strong background noise. The phase velocity was taken from phase inclination and from the convective peak in one- and two-dimensional wavenumber spectra. An approach was introduced to remove the acoustic noise from the data by applying a method based on CLEAN-SC on the two-dimensional spectra, thereby increasing the frequency range where information about the boundary layer was retrievable. A comparison with prediction models showed some discrepancies in the low-frequency range. Therefore, pressure data from a DNS calculation was used to substantiate the results of the analysis in this frequency range. Using the measured data, the DNS results and a review of the models used for comparison it was found that the phase velocity decreases at low frequencies.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2017.05.011</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-460X |
ispartof | Journal of sound and vibration, 2017-08, Vol.402, p.85-103 |
issn | 0022-460X 1095-8568 |
language | eng |
recordid | cdi_proquest_journals_2061520401 |
source | Access via ScienceDirect (Elsevier) |
subjects | Acoustic noise Acoustic phase velocity Background noise Boundary layer CLEAN-SC Frequencies Hydrodynamic phase velocity Inclination Mach number Model comparison Phase velocity Rangefinding Studies Turbulent boundary layer Variation Velocity Vibration Wavelengths Wind tunnels |
title | Obtaining phase velocity of turbulent boundary layer pressure fluctuations at high subsonic Mach number from wind tunnel data affected by strong background noise |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A55%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Obtaining%20phase%20velocity%20of%20turbulent%20boundary%20layer%20pressure%20fluctuations%20at%20high%20subsonic%20Mach%20number%20from%20wind%20tunnel%20data%20affected%20by%20strong%20background%20noise&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Haxter,%20Stefan&rft.date=2017-08-18&rft.volume=402&rft.spage=85&rft.epage=103&rft.pages=85-103&rft.issn=0022-460X&rft.eissn=1095-8568&rft_id=info:doi/10.1016/j.jsv.2017.05.011&rft_dat=%3Cproquest_cross%3E2061520401%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2061520401&rft_id=info:pmid/&rft_els_id=S0022460X17303905&rfr_iscdi=true |