Identification of molecular fingerprints of phenylindole derivatives as cytotoxic agents: a multi-QSAR approach
Phenylindole is reported to be an interesting scaffold having promising cytotoxic activities and can overcome the cancer drug resistance possibly via binding to the colchicine binding site of tubulin. In order to find out the molecular fingerprints for the better cytotoxic activity of phenylindole d...
Gespeichert in:
Veröffentlicht in: | Structural chemistry 2018-08, Vol.29 (4), p.1095-1107 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1107 |
---|---|
container_issue | 4 |
container_start_page | 1095 |
container_title | Structural chemistry |
container_volume | 29 |
creator | Gaikwad, Ruchi Amin, Sk. Abdul Adhikari, Nilanjan Ghorai, Soumajit Jha, Tarun Gayen, Shovanlal |
description | Phenylindole is reported to be an interesting scaffold having promising cytotoxic activities and can overcome the cancer drug resistance possibly via binding to the colchicine binding site of tubulin. In order to find out the molecular fingerprints for the better cytotoxic activity of phenylindole derivatives, multiple validated chemometric modeling approaches namely hologram QSAR (HQSAR), Bayesian classification model, and pharmacophore mapping analyses were applied into a dataset of 102 phenylindole derivatives. The final HQSAR model shows good statistical significance (
Q
2
= 0.760;
R
2
Train
= 0.868;
R
2
Test
= 0.660), and the best pharmacophore hypothesis has the highest regression coefficient value (
r
= 0.975) and the lowest
RMS
value of 0.679. Moreover, the Bayesian model is also statistically validated and robust to discriminate the cytotoxic and non-cytotoxic phenylindoles. These studies suggest that the amine group should be unsubstituted for retaining higher cytotoxicity. The pharmacophore mapping and Bayesian classification study suggest the importance of 2-phenyl group as a ring aromatic feature conducive to cytotoxicity. The steric and hydrophobic effect of long chain linear alkyl group has a positive influence on cytotoxicity as evidenced by the multi-QSAR study. Therefore, this multi-QSAR modeling reported here is beneficial in designing potential phenylindole cytotoxic agents in future. |
doi_str_mv | 10.1007/s11224-018-1094-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2061457291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2061457291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-589bf88af734bbcbc04dcaf9913ef90074d3fd19437296f2f373cf1f179e8f683</originalsourceid><addsrcrecordid>eNp1kE1rwzAMhs3YYF23H7CbYWdvVuwm8W6l7KNQGPs6G8exW5c0zuykrP9-Dh3stIOQkPS-Qg9C10BvgdLiLgJkGScUSgJUcMJP0ARmRUYEpXCaasopSUHP0UWM29SEnM0myC9r0_bOOq1651vsLd75xuihUQFb165N6IJr-zhOuo1pD41r67SBaxPcPon2JmIVsT70vvffTmO1To7xHiu8G5rekdf3-RtWXRe80ptLdGZVE83Vb56iz8eHj8UzWb08LRfzFdEM8p7MSlHZslS2YLyqdKUpr7WyQgAzNr1U8JrZGgRnRSZym1lWMG3BQiFMafOSTdHN0Ted_RpM7OXWD6FNJ2VGc-AJTfKaIjhu6eBjDMbK9OxOhYMEKkeu8shVJq5y5Cp50mRHTRzBJD5_zv-LfgDbhHyr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2061457291</pqid></control><display><type>article</type><title>Identification of molecular fingerprints of phenylindole derivatives as cytotoxic agents: a multi-QSAR approach</title><source>Springer Nature - Complete Springer Journals</source><creator>Gaikwad, Ruchi ; Amin, Sk. Abdul ; Adhikari, Nilanjan ; Ghorai, Soumajit ; Jha, Tarun ; Gayen, Shovanlal</creator><creatorcontrib>Gaikwad, Ruchi ; Amin, Sk. Abdul ; Adhikari, Nilanjan ; Ghorai, Soumajit ; Jha, Tarun ; Gayen, Shovanlal</creatorcontrib><description>Phenylindole is reported to be an interesting scaffold having promising cytotoxic activities and can overcome the cancer drug resistance possibly via binding to the colchicine binding site of tubulin. In order to find out the molecular fingerprints for the better cytotoxic activity of phenylindole derivatives, multiple validated chemometric modeling approaches namely hologram QSAR (HQSAR), Bayesian classification model, and pharmacophore mapping analyses were applied into a dataset of 102 phenylindole derivatives. The final HQSAR model shows good statistical significance (
Q
2
= 0.760;
R
2
Train
= 0.868;
R
2
Test
= 0.660), and the best pharmacophore hypothesis has the highest regression coefficient value (
r
= 0.975) and the lowest
RMS
value of 0.679. Moreover, the Bayesian model is also statistically validated and robust to discriminate the cytotoxic and non-cytotoxic phenylindoles. These studies suggest that the amine group should be unsubstituted for retaining higher cytotoxicity. The pharmacophore mapping and Bayesian classification study suggest the importance of 2-phenyl group as a ring aromatic feature conducive to cytotoxicity. The steric and hydrophobic effect of long chain linear alkyl group has a positive influence on cytotoxicity as evidenced by the multi-QSAR study. Therefore, this multi-QSAR modeling reported here is beneficial in designing potential phenylindole cytotoxic agents in future.</description><identifier>ISSN: 1040-0400</identifier><identifier>EISSN: 1572-9001</identifier><identifier>DOI: 10.1007/s11224-018-1094-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bayesian analysis ; Binding sites ; Chemical fingerprinting ; Chemistry ; Chemistry and Materials Science ; Classification ; Colchicine ; Computer Applications in Chemistry ; Cytotoxicity ; Derivatives ; Mapping ; Modelling ; Molecular chains ; Original Research ; Pharmacology ; Physical Chemistry ; Regression analysis ; Regression coefficients ; Statistical analysis ; Theoretical and Computational Chemistry ; Toxicity</subject><ispartof>Structural chemistry, 2018-08, Vol.29 (4), p.1095-1107</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-589bf88af734bbcbc04dcaf9913ef90074d3fd19437296f2f373cf1f179e8f683</citedby><cites>FETCH-LOGICAL-c316t-589bf88af734bbcbc04dcaf9913ef90074d3fd19437296f2f373cf1f179e8f683</cites><orcidid>0000-0001-5523-7716</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11224-018-1094-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11224-018-1094-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Gaikwad, Ruchi</creatorcontrib><creatorcontrib>Amin, Sk. Abdul</creatorcontrib><creatorcontrib>Adhikari, Nilanjan</creatorcontrib><creatorcontrib>Ghorai, Soumajit</creatorcontrib><creatorcontrib>Jha, Tarun</creatorcontrib><creatorcontrib>Gayen, Shovanlal</creatorcontrib><title>Identification of molecular fingerprints of phenylindole derivatives as cytotoxic agents: a multi-QSAR approach</title><title>Structural chemistry</title><addtitle>Struct Chem</addtitle><description>Phenylindole is reported to be an interesting scaffold having promising cytotoxic activities and can overcome the cancer drug resistance possibly via binding to the colchicine binding site of tubulin. In order to find out the molecular fingerprints for the better cytotoxic activity of phenylindole derivatives, multiple validated chemometric modeling approaches namely hologram QSAR (HQSAR), Bayesian classification model, and pharmacophore mapping analyses were applied into a dataset of 102 phenylindole derivatives. The final HQSAR model shows good statistical significance (
Q
2
= 0.760;
R
2
Train
= 0.868;
R
2
Test
= 0.660), and the best pharmacophore hypothesis has the highest regression coefficient value (
r
= 0.975) and the lowest
RMS
value of 0.679. Moreover, the Bayesian model is also statistically validated and robust to discriminate the cytotoxic and non-cytotoxic phenylindoles. These studies suggest that the amine group should be unsubstituted for retaining higher cytotoxicity. The pharmacophore mapping and Bayesian classification study suggest the importance of 2-phenyl group as a ring aromatic feature conducive to cytotoxicity. The steric and hydrophobic effect of long chain linear alkyl group has a positive influence on cytotoxicity as evidenced by the multi-QSAR study. Therefore, this multi-QSAR modeling reported here is beneficial in designing potential phenylindole cytotoxic agents in future.</description><subject>Bayesian analysis</subject><subject>Binding sites</subject><subject>Chemical fingerprinting</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Classification</subject><subject>Colchicine</subject><subject>Computer Applications in Chemistry</subject><subject>Cytotoxicity</subject><subject>Derivatives</subject><subject>Mapping</subject><subject>Modelling</subject><subject>Molecular chains</subject><subject>Original Research</subject><subject>Pharmacology</subject><subject>Physical Chemistry</subject><subject>Regression analysis</subject><subject>Regression coefficients</subject><subject>Statistical analysis</subject><subject>Theoretical and Computational Chemistry</subject><subject>Toxicity</subject><issn>1040-0400</issn><issn>1572-9001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1rwzAMhs3YYF23H7CbYWdvVuwm8W6l7KNQGPs6G8exW5c0zuykrP9-Dh3stIOQkPS-Qg9C10BvgdLiLgJkGScUSgJUcMJP0ARmRUYEpXCaasopSUHP0UWM29SEnM0myC9r0_bOOq1651vsLd75xuihUQFb165N6IJr-zhOuo1pD41r67SBaxPcPon2JmIVsT70vvffTmO1To7xHiu8G5rekdf3-RtWXRe80ptLdGZVE83Vb56iz8eHj8UzWb08LRfzFdEM8p7MSlHZslS2YLyqdKUpr7WyQgAzNr1U8JrZGgRnRSZym1lWMG3BQiFMafOSTdHN0Ted_RpM7OXWD6FNJ2VGc-AJTfKaIjhu6eBjDMbK9OxOhYMEKkeu8shVJq5y5Cp50mRHTRzBJD5_zv-LfgDbhHyr</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Gaikwad, Ruchi</creator><creator>Amin, Sk. Abdul</creator><creator>Adhikari, Nilanjan</creator><creator>Ghorai, Soumajit</creator><creator>Jha, Tarun</creator><creator>Gayen, Shovanlal</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5523-7716</orcidid></search><sort><creationdate>20180801</creationdate><title>Identification of molecular fingerprints of phenylindole derivatives as cytotoxic agents: a multi-QSAR approach</title><author>Gaikwad, Ruchi ; Amin, Sk. Abdul ; Adhikari, Nilanjan ; Ghorai, Soumajit ; Jha, Tarun ; Gayen, Shovanlal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-589bf88af734bbcbc04dcaf9913ef90074d3fd19437296f2f373cf1f179e8f683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bayesian analysis</topic><topic>Binding sites</topic><topic>Chemical fingerprinting</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Classification</topic><topic>Colchicine</topic><topic>Computer Applications in Chemistry</topic><topic>Cytotoxicity</topic><topic>Derivatives</topic><topic>Mapping</topic><topic>Modelling</topic><topic>Molecular chains</topic><topic>Original Research</topic><topic>Pharmacology</topic><topic>Physical Chemistry</topic><topic>Regression analysis</topic><topic>Regression coefficients</topic><topic>Statistical analysis</topic><topic>Theoretical and Computational Chemistry</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaikwad, Ruchi</creatorcontrib><creatorcontrib>Amin, Sk. Abdul</creatorcontrib><creatorcontrib>Adhikari, Nilanjan</creatorcontrib><creatorcontrib>Ghorai, Soumajit</creatorcontrib><creatorcontrib>Jha, Tarun</creatorcontrib><creatorcontrib>Gayen, Shovanlal</creatorcontrib><collection>CrossRef</collection><jtitle>Structural chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaikwad, Ruchi</au><au>Amin, Sk. Abdul</au><au>Adhikari, Nilanjan</au><au>Ghorai, Soumajit</au><au>Jha, Tarun</au><au>Gayen, Shovanlal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of molecular fingerprints of phenylindole derivatives as cytotoxic agents: a multi-QSAR approach</atitle><jtitle>Structural chemistry</jtitle><stitle>Struct Chem</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>29</volume><issue>4</issue><spage>1095</spage><epage>1107</epage><pages>1095-1107</pages><issn>1040-0400</issn><eissn>1572-9001</eissn><abstract>Phenylindole is reported to be an interesting scaffold having promising cytotoxic activities and can overcome the cancer drug resistance possibly via binding to the colchicine binding site of tubulin. In order to find out the molecular fingerprints for the better cytotoxic activity of phenylindole derivatives, multiple validated chemometric modeling approaches namely hologram QSAR (HQSAR), Bayesian classification model, and pharmacophore mapping analyses were applied into a dataset of 102 phenylindole derivatives. The final HQSAR model shows good statistical significance (
Q
2
= 0.760;
R
2
Train
= 0.868;
R
2
Test
= 0.660), and the best pharmacophore hypothesis has the highest regression coefficient value (
r
= 0.975) and the lowest
RMS
value of 0.679. Moreover, the Bayesian model is also statistically validated and robust to discriminate the cytotoxic and non-cytotoxic phenylindoles. These studies suggest that the amine group should be unsubstituted for retaining higher cytotoxicity. The pharmacophore mapping and Bayesian classification study suggest the importance of 2-phenyl group as a ring aromatic feature conducive to cytotoxicity. The steric and hydrophobic effect of long chain linear alkyl group has a positive influence on cytotoxicity as evidenced by the multi-QSAR study. Therefore, this multi-QSAR modeling reported here is beneficial in designing potential phenylindole cytotoxic agents in future.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11224-018-1094-4</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5523-7716</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1040-0400 |
ispartof | Structural chemistry, 2018-08, Vol.29 (4), p.1095-1107 |
issn | 1040-0400 1572-9001 |
language | eng |
recordid | cdi_proquest_journals_2061457291 |
source | Springer Nature - Complete Springer Journals |
subjects | Bayesian analysis Binding sites Chemical fingerprinting Chemistry Chemistry and Materials Science Classification Colchicine Computer Applications in Chemistry Cytotoxicity Derivatives Mapping Modelling Molecular chains Original Research Pharmacology Physical Chemistry Regression analysis Regression coefficients Statistical analysis Theoretical and Computational Chemistry Toxicity |
title | Identification of molecular fingerprints of phenylindole derivatives as cytotoxic agents: a multi-QSAR approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A59%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20molecular%20fingerprints%20of%20phenylindole%20derivatives%20as%20cytotoxic%20agents:%20a%20multi-QSAR%20approach&rft.jtitle=Structural%20chemistry&rft.au=Gaikwad,%20Ruchi&rft.date=2018-08-01&rft.volume=29&rft.issue=4&rft.spage=1095&rft.epage=1107&rft.pages=1095-1107&rft.issn=1040-0400&rft.eissn=1572-9001&rft_id=info:doi/10.1007/s11224-018-1094-4&rft_dat=%3Cproquest_cross%3E2061457291%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2061457291&rft_id=info:pmid/&rfr_iscdi=true |