Identification of molecular fingerprints of phenylindole derivatives as cytotoxic agents: a multi-QSAR approach

Phenylindole is reported to be an interesting scaffold having promising cytotoxic activities and can overcome the cancer drug resistance possibly via binding to the colchicine binding site of tubulin. In order to find out the molecular fingerprints for the better cytotoxic activity of phenylindole d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural chemistry 2018-08, Vol.29 (4), p.1095-1107
Hauptverfasser: Gaikwad, Ruchi, Amin, Sk. Abdul, Adhikari, Nilanjan, Ghorai, Soumajit, Jha, Tarun, Gayen, Shovanlal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1107
container_issue 4
container_start_page 1095
container_title Structural chemistry
container_volume 29
creator Gaikwad, Ruchi
Amin, Sk. Abdul
Adhikari, Nilanjan
Ghorai, Soumajit
Jha, Tarun
Gayen, Shovanlal
description Phenylindole is reported to be an interesting scaffold having promising cytotoxic activities and can overcome the cancer drug resistance possibly via binding to the colchicine binding site of tubulin. In order to find out the molecular fingerprints for the better cytotoxic activity of phenylindole derivatives, multiple validated chemometric modeling approaches namely hologram QSAR (HQSAR), Bayesian classification model, and pharmacophore mapping analyses were applied into a dataset of 102 phenylindole derivatives. The final HQSAR model shows good statistical significance ( Q 2  = 0.760; R 2 Train  = 0.868; R 2 Test  = 0.660), and the best pharmacophore hypothesis has the highest regression coefficient value ( r  = 0.975) and the lowest RMS value of 0.679. Moreover, the Bayesian model is also statistically validated and robust to discriminate the cytotoxic and non-cytotoxic phenylindoles. These studies suggest that the amine group should be unsubstituted for retaining higher cytotoxicity. The pharmacophore mapping and Bayesian classification study suggest the importance of 2-phenyl group as a ring aromatic feature conducive to cytotoxicity. The steric and hydrophobic effect of long chain linear alkyl group has a positive influence on cytotoxicity as evidenced by the multi-QSAR study. Therefore, this multi-QSAR modeling reported here is beneficial in designing potential phenylindole cytotoxic agents in future.
doi_str_mv 10.1007/s11224-018-1094-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2061457291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2061457291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-589bf88af734bbcbc04dcaf9913ef90074d3fd19437296f2f373cf1f179e8f683</originalsourceid><addsrcrecordid>eNp1kE1rwzAMhs3YYF23H7CbYWdvVuwm8W6l7KNQGPs6G8exW5c0zuykrP9-Dh3stIOQkPS-Qg9C10BvgdLiLgJkGScUSgJUcMJP0ARmRUYEpXCaasopSUHP0UWM29SEnM0myC9r0_bOOq1651vsLd75xuihUQFb165N6IJr-zhOuo1pD41r67SBaxPcPon2JmIVsT70vvffTmO1To7xHiu8G5rekdf3-RtWXRe80ptLdGZVE83Vb56iz8eHj8UzWb08LRfzFdEM8p7MSlHZslS2YLyqdKUpr7WyQgAzNr1U8JrZGgRnRSZym1lWMG3BQiFMafOSTdHN0Ted_RpM7OXWD6FNJ2VGc-AJTfKaIjhu6eBjDMbK9OxOhYMEKkeu8shVJq5y5Cp50mRHTRzBJD5_zv-LfgDbhHyr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2061457291</pqid></control><display><type>article</type><title>Identification of molecular fingerprints of phenylindole derivatives as cytotoxic agents: a multi-QSAR approach</title><source>Springer Nature - Complete Springer Journals</source><creator>Gaikwad, Ruchi ; Amin, Sk. Abdul ; Adhikari, Nilanjan ; Ghorai, Soumajit ; Jha, Tarun ; Gayen, Shovanlal</creator><creatorcontrib>Gaikwad, Ruchi ; Amin, Sk. Abdul ; Adhikari, Nilanjan ; Ghorai, Soumajit ; Jha, Tarun ; Gayen, Shovanlal</creatorcontrib><description>Phenylindole is reported to be an interesting scaffold having promising cytotoxic activities and can overcome the cancer drug resistance possibly via binding to the colchicine binding site of tubulin. In order to find out the molecular fingerprints for the better cytotoxic activity of phenylindole derivatives, multiple validated chemometric modeling approaches namely hologram QSAR (HQSAR), Bayesian classification model, and pharmacophore mapping analyses were applied into a dataset of 102 phenylindole derivatives. The final HQSAR model shows good statistical significance ( Q 2  = 0.760; R 2 Train  = 0.868; R 2 Test  = 0.660), and the best pharmacophore hypothesis has the highest regression coefficient value ( r  = 0.975) and the lowest RMS value of 0.679. Moreover, the Bayesian model is also statistically validated and robust to discriminate the cytotoxic and non-cytotoxic phenylindoles. These studies suggest that the amine group should be unsubstituted for retaining higher cytotoxicity. The pharmacophore mapping and Bayesian classification study suggest the importance of 2-phenyl group as a ring aromatic feature conducive to cytotoxicity. The steric and hydrophobic effect of long chain linear alkyl group has a positive influence on cytotoxicity as evidenced by the multi-QSAR study. Therefore, this multi-QSAR modeling reported here is beneficial in designing potential phenylindole cytotoxic agents in future.</description><identifier>ISSN: 1040-0400</identifier><identifier>EISSN: 1572-9001</identifier><identifier>DOI: 10.1007/s11224-018-1094-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bayesian analysis ; Binding sites ; Chemical fingerprinting ; Chemistry ; Chemistry and Materials Science ; Classification ; Colchicine ; Computer Applications in Chemistry ; Cytotoxicity ; Derivatives ; Mapping ; Modelling ; Molecular chains ; Original Research ; Pharmacology ; Physical Chemistry ; Regression analysis ; Regression coefficients ; Statistical analysis ; Theoretical and Computational Chemistry ; Toxicity</subject><ispartof>Structural chemistry, 2018-08, Vol.29 (4), p.1095-1107</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-589bf88af734bbcbc04dcaf9913ef90074d3fd19437296f2f373cf1f179e8f683</citedby><cites>FETCH-LOGICAL-c316t-589bf88af734bbcbc04dcaf9913ef90074d3fd19437296f2f373cf1f179e8f683</cites><orcidid>0000-0001-5523-7716</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11224-018-1094-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11224-018-1094-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Gaikwad, Ruchi</creatorcontrib><creatorcontrib>Amin, Sk. Abdul</creatorcontrib><creatorcontrib>Adhikari, Nilanjan</creatorcontrib><creatorcontrib>Ghorai, Soumajit</creatorcontrib><creatorcontrib>Jha, Tarun</creatorcontrib><creatorcontrib>Gayen, Shovanlal</creatorcontrib><title>Identification of molecular fingerprints of phenylindole derivatives as cytotoxic agents: a multi-QSAR approach</title><title>Structural chemistry</title><addtitle>Struct Chem</addtitle><description>Phenylindole is reported to be an interesting scaffold having promising cytotoxic activities and can overcome the cancer drug resistance possibly via binding to the colchicine binding site of tubulin. In order to find out the molecular fingerprints for the better cytotoxic activity of phenylindole derivatives, multiple validated chemometric modeling approaches namely hologram QSAR (HQSAR), Bayesian classification model, and pharmacophore mapping analyses were applied into a dataset of 102 phenylindole derivatives. The final HQSAR model shows good statistical significance ( Q 2  = 0.760; R 2 Train  = 0.868; R 2 Test  = 0.660), and the best pharmacophore hypothesis has the highest regression coefficient value ( r  = 0.975) and the lowest RMS value of 0.679. Moreover, the Bayesian model is also statistically validated and robust to discriminate the cytotoxic and non-cytotoxic phenylindoles. These studies suggest that the amine group should be unsubstituted for retaining higher cytotoxicity. The pharmacophore mapping and Bayesian classification study suggest the importance of 2-phenyl group as a ring aromatic feature conducive to cytotoxicity. The steric and hydrophobic effect of long chain linear alkyl group has a positive influence on cytotoxicity as evidenced by the multi-QSAR study. Therefore, this multi-QSAR modeling reported here is beneficial in designing potential phenylindole cytotoxic agents in future.</description><subject>Bayesian analysis</subject><subject>Binding sites</subject><subject>Chemical fingerprinting</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Classification</subject><subject>Colchicine</subject><subject>Computer Applications in Chemistry</subject><subject>Cytotoxicity</subject><subject>Derivatives</subject><subject>Mapping</subject><subject>Modelling</subject><subject>Molecular chains</subject><subject>Original Research</subject><subject>Pharmacology</subject><subject>Physical Chemistry</subject><subject>Regression analysis</subject><subject>Regression coefficients</subject><subject>Statistical analysis</subject><subject>Theoretical and Computational Chemistry</subject><subject>Toxicity</subject><issn>1040-0400</issn><issn>1572-9001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1rwzAMhs3YYF23H7CbYWdvVuwm8W6l7KNQGPs6G8exW5c0zuykrP9-Dh3stIOQkPS-Qg9C10BvgdLiLgJkGScUSgJUcMJP0ARmRUYEpXCaasopSUHP0UWM29SEnM0myC9r0_bOOq1651vsLd75xuihUQFb165N6IJr-zhOuo1pD41r67SBaxPcPon2JmIVsT70vvffTmO1To7xHiu8G5rekdf3-RtWXRe80ptLdGZVE83Vb56iz8eHj8UzWb08LRfzFdEM8p7MSlHZslS2YLyqdKUpr7WyQgAzNr1U8JrZGgRnRSZym1lWMG3BQiFMafOSTdHN0Ted_RpM7OXWD6FNJ2VGc-AJTfKaIjhu6eBjDMbK9OxOhYMEKkeu8shVJq5y5Cp50mRHTRzBJD5_zv-LfgDbhHyr</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Gaikwad, Ruchi</creator><creator>Amin, Sk. Abdul</creator><creator>Adhikari, Nilanjan</creator><creator>Ghorai, Soumajit</creator><creator>Jha, Tarun</creator><creator>Gayen, Shovanlal</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5523-7716</orcidid></search><sort><creationdate>20180801</creationdate><title>Identification of molecular fingerprints of phenylindole derivatives as cytotoxic agents: a multi-QSAR approach</title><author>Gaikwad, Ruchi ; Amin, Sk. Abdul ; Adhikari, Nilanjan ; Ghorai, Soumajit ; Jha, Tarun ; Gayen, Shovanlal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-589bf88af734bbcbc04dcaf9913ef90074d3fd19437296f2f373cf1f179e8f683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bayesian analysis</topic><topic>Binding sites</topic><topic>Chemical fingerprinting</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Classification</topic><topic>Colchicine</topic><topic>Computer Applications in Chemistry</topic><topic>Cytotoxicity</topic><topic>Derivatives</topic><topic>Mapping</topic><topic>Modelling</topic><topic>Molecular chains</topic><topic>Original Research</topic><topic>Pharmacology</topic><topic>Physical Chemistry</topic><topic>Regression analysis</topic><topic>Regression coefficients</topic><topic>Statistical analysis</topic><topic>Theoretical and Computational Chemistry</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaikwad, Ruchi</creatorcontrib><creatorcontrib>Amin, Sk. Abdul</creatorcontrib><creatorcontrib>Adhikari, Nilanjan</creatorcontrib><creatorcontrib>Ghorai, Soumajit</creatorcontrib><creatorcontrib>Jha, Tarun</creatorcontrib><creatorcontrib>Gayen, Shovanlal</creatorcontrib><collection>CrossRef</collection><jtitle>Structural chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaikwad, Ruchi</au><au>Amin, Sk. Abdul</au><au>Adhikari, Nilanjan</au><au>Ghorai, Soumajit</au><au>Jha, Tarun</au><au>Gayen, Shovanlal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of molecular fingerprints of phenylindole derivatives as cytotoxic agents: a multi-QSAR approach</atitle><jtitle>Structural chemistry</jtitle><stitle>Struct Chem</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>29</volume><issue>4</issue><spage>1095</spage><epage>1107</epage><pages>1095-1107</pages><issn>1040-0400</issn><eissn>1572-9001</eissn><abstract>Phenylindole is reported to be an interesting scaffold having promising cytotoxic activities and can overcome the cancer drug resistance possibly via binding to the colchicine binding site of tubulin. In order to find out the molecular fingerprints for the better cytotoxic activity of phenylindole derivatives, multiple validated chemometric modeling approaches namely hologram QSAR (HQSAR), Bayesian classification model, and pharmacophore mapping analyses were applied into a dataset of 102 phenylindole derivatives. The final HQSAR model shows good statistical significance ( Q 2  = 0.760; R 2 Train  = 0.868; R 2 Test  = 0.660), and the best pharmacophore hypothesis has the highest regression coefficient value ( r  = 0.975) and the lowest RMS value of 0.679. Moreover, the Bayesian model is also statistically validated and robust to discriminate the cytotoxic and non-cytotoxic phenylindoles. These studies suggest that the amine group should be unsubstituted for retaining higher cytotoxicity. The pharmacophore mapping and Bayesian classification study suggest the importance of 2-phenyl group as a ring aromatic feature conducive to cytotoxicity. The steric and hydrophobic effect of long chain linear alkyl group has a positive influence on cytotoxicity as evidenced by the multi-QSAR study. Therefore, this multi-QSAR modeling reported here is beneficial in designing potential phenylindole cytotoxic agents in future.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11224-018-1094-4</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5523-7716</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1040-0400
ispartof Structural chemistry, 2018-08, Vol.29 (4), p.1095-1107
issn 1040-0400
1572-9001
language eng
recordid cdi_proquest_journals_2061457291
source Springer Nature - Complete Springer Journals
subjects Bayesian analysis
Binding sites
Chemical fingerprinting
Chemistry
Chemistry and Materials Science
Classification
Colchicine
Computer Applications in Chemistry
Cytotoxicity
Derivatives
Mapping
Modelling
Molecular chains
Original Research
Pharmacology
Physical Chemistry
Regression analysis
Regression coefficients
Statistical analysis
Theoretical and Computational Chemistry
Toxicity
title Identification of molecular fingerprints of phenylindole derivatives as cytotoxic agents: a multi-QSAR approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A59%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20molecular%20fingerprints%20of%20phenylindole%20derivatives%20as%20cytotoxic%20agents:%20a%20multi-QSAR%20approach&rft.jtitle=Structural%20chemistry&rft.au=Gaikwad,%20Ruchi&rft.date=2018-08-01&rft.volume=29&rft.issue=4&rft.spage=1095&rft.epage=1107&rft.pages=1095-1107&rft.issn=1040-0400&rft.eissn=1572-9001&rft_id=info:doi/10.1007/s11224-018-1094-4&rft_dat=%3Cproquest_cross%3E2061457291%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2061457291&rft_id=info:pmid/&rfr_iscdi=true