Estimation of single plane unbalance parameters of a rotor-bearing system using Kalman filtering based force estimation technique

This paper proposes a model-based method to estimate single plane unbalance parameters (amplitude and phase angle) in a rotor using Kalman filter and recursive least square based input force estimation technique. Kalman filter based input force estimation technique requires state-space model and res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sound and vibration 2018-03, Vol.418, p.184-199
Hauptverfasser: Shrivastava, Akash, Mohanty, A.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 199
container_issue
container_start_page 184
container_title Journal of sound and vibration
container_volume 418
creator Shrivastava, Akash
Mohanty, A.R.
description This paper proposes a model-based method to estimate single plane unbalance parameters (amplitude and phase angle) in a rotor using Kalman filter and recursive least square based input force estimation technique. Kalman filter based input force estimation technique requires state-space model and response measurements. A modified system equivalent reduction expansion process (SEREP) technique is employed to obtain a reduced-order model of the rotor system so that limited response measurements can be used. The method is demonstrated using numerical simulations on a rotor-disk-bearing system. Results are presented for different measurement sets including displacement, velocity, and rotational response. Effects of measurement noise level, filter parameters (process noise covariance and forgetting factor), and modeling error are also presented and it is observed that the unbalance parameter estimation is robust with respect to measurement noise. •Kalman filter based unbalance parameter estimation technique is proposed.•Unbalance parameters are estimated after unbalance force estimation.•Effects of different measurement sets and noise levels are analyzed.•Unbalance parameter estimation is robust with respect to measurement noise.
doi_str_mv 10.1016/j.jsv.2017.11.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2061052148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X17307952</els_id><sourcerecordid>2061052148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-c67025556fc10e95281823ba7391b3314cdfc00635799163fbd6b2404f3f6e1e3</originalsourceid><addsrcrecordid>eNp9kE2LFDEQhoOs4OzqD_AW8NxtVdLJdONJlnWVHfCi4C2k0xVN09MZk8zCHv3nphnB257ywfPWWzyMvUVoEVC_n9s5P7YCcN8itiDgBdshDKrple6v2A5AiKbT8OMVu855BoChk92O_bnLJRxtCXHl0fMc1p8L8dNiV-LndbT14urbJnukQilvkOUplpiakWyqPM9PudCRn7cwf7DL0a7ch6Xi28doM03cx1Tn0P-yQu7XGn6f6TV76e2S6c2_84Z9_3T37fZzc_h6_-X246FxUqjSOL0HoZTS3iHQoESPvZCj3csBRymxc5N3AFqq_TCgln6c9Cg66Lz0mpDkDXt3mXtKsdbmYuZ4TmutNAI0ghLY9ZXCC-VSzDmRN6dUV05PBsFsps1sqmmzmTaIppqumQ-XDNX1HwMlk12g6m0KiVwxUwzPpP8CxRSIHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2061052148</pqid></control><display><type>article</type><title>Estimation of single plane unbalance parameters of a rotor-bearing system using Kalman filtering based force estimation technique</title><source>Elsevier ScienceDirect Journals</source><creator>Shrivastava, Akash ; Mohanty, A.R.</creator><creatorcontrib>Shrivastava, Akash ; Mohanty, A.R.</creatorcontrib><description>This paper proposes a model-based method to estimate single plane unbalance parameters (amplitude and phase angle) in a rotor using Kalman filter and recursive least square based input force estimation technique. Kalman filter based input force estimation technique requires state-space model and response measurements. A modified system equivalent reduction expansion process (SEREP) technique is employed to obtain a reduced-order model of the rotor system so that limited response measurements can be used. The method is demonstrated using numerical simulations on a rotor-disk-bearing system. Results are presented for different measurement sets including displacement, velocity, and rotational response. Effects of measurement noise level, filter parameters (process noise covariance and forgetting factor), and modeling error are also presented and it is observed that the unbalance parameter estimation is robust with respect to measurement noise. •Kalman filter based unbalance parameter estimation technique is proposed.•Unbalance parameters are estimated after unbalance force estimation.•Effects of different measurement sets and noise levels are analyzed.•Unbalance parameter estimation is robust with respect to measurement noise.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2017.11.020</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Bearings ; Computer simulation ; Covariance ; Fault diagnosis ; Filtration ; Kalman filter ; Kalman filters ; Mathematical models ; Model-based fault diagnosis ; Noise measurement ; Parameter estimation ; Parameter robustness ; Process parameters ; Reduced order models ; Robustness (mathematics) ; Rotation ; Rotor-bearing systems ; Simulation ; State space models ; System equivalent reduction expansion process ; Unbalance ; Unbalance identification</subject><ispartof>Journal of sound and vibration, 2018-03, Vol.418, p.184-199</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Mar 31, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-c67025556fc10e95281823ba7391b3314cdfc00635799163fbd6b2404f3f6e1e3</citedby><cites>FETCH-LOGICAL-c325t-c67025556fc10e95281823ba7391b3314cdfc00635799163fbd6b2404f3f6e1e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jsv.2017.11.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Shrivastava, Akash</creatorcontrib><creatorcontrib>Mohanty, A.R.</creatorcontrib><title>Estimation of single plane unbalance parameters of a rotor-bearing system using Kalman filtering based force estimation technique</title><title>Journal of sound and vibration</title><description>This paper proposes a model-based method to estimate single plane unbalance parameters (amplitude and phase angle) in a rotor using Kalman filter and recursive least square based input force estimation technique. Kalman filter based input force estimation technique requires state-space model and response measurements. A modified system equivalent reduction expansion process (SEREP) technique is employed to obtain a reduced-order model of the rotor system so that limited response measurements can be used. The method is demonstrated using numerical simulations on a rotor-disk-bearing system. Results are presented for different measurement sets including displacement, velocity, and rotational response. Effects of measurement noise level, filter parameters (process noise covariance and forgetting factor), and modeling error are also presented and it is observed that the unbalance parameter estimation is robust with respect to measurement noise. •Kalman filter based unbalance parameter estimation technique is proposed.•Unbalance parameters are estimated after unbalance force estimation.•Effects of different measurement sets and noise levels are analyzed.•Unbalance parameter estimation is robust with respect to measurement noise.</description><subject>Bearings</subject><subject>Computer simulation</subject><subject>Covariance</subject><subject>Fault diagnosis</subject><subject>Filtration</subject><subject>Kalman filter</subject><subject>Kalman filters</subject><subject>Mathematical models</subject><subject>Model-based fault diagnosis</subject><subject>Noise measurement</subject><subject>Parameter estimation</subject><subject>Parameter robustness</subject><subject>Process parameters</subject><subject>Reduced order models</subject><subject>Robustness (mathematics)</subject><subject>Rotation</subject><subject>Rotor-bearing systems</subject><subject>Simulation</subject><subject>State space models</subject><subject>System equivalent reduction expansion process</subject><subject>Unbalance</subject><subject>Unbalance identification</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE2LFDEQhoOs4OzqD_AW8NxtVdLJdONJlnWVHfCi4C2k0xVN09MZk8zCHv3nphnB257ywfPWWzyMvUVoEVC_n9s5P7YCcN8itiDgBdshDKrple6v2A5AiKbT8OMVu855BoChk92O_bnLJRxtCXHl0fMc1p8L8dNiV-LndbT14urbJnukQilvkOUplpiakWyqPM9PudCRn7cwf7DL0a7ch6Xi28doM03cx1Tn0P-yQu7XGn6f6TV76e2S6c2_84Z9_3T37fZzc_h6_-X246FxUqjSOL0HoZTS3iHQoESPvZCj3csBRymxc5N3AFqq_TCgln6c9Cg66Lz0mpDkDXt3mXtKsdbmYuZ4TmutNAI0ghLY9ZXCC-VSzDmRN6dUV05PBsFsps1sqmmzmTaIppqumQ-XDNX1HwMlk12g6m0KiVwxUwzPpP8CxRSIHw</recordid><startdate>20180331</startdate><enddate>20180331</enddate><creator>Shrivastava, Akash</creator><creator>Mohanty, A.R.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20180331</creationdate><title>Estimation of single plane unbalance parameters of a rotor-bearing system using Kalman filtering based force estimation technique</title><author>Shrivastava, Akash ; Mohanty, A.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-c67025556fc10e95281823ba7391b3314cdfc00635799163fbd6b2404f3f6e1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bearings</topic><topic>Computer simulation</topic><topic>Covariance</topic><topic>Fault diagnosis</topic><topic>Filtration</topic><topic>Kalman filter</topic><topic>Kalman filters</topic><topic>Mathematical models</topic><topic>Model-based fault diagnosis</topic><topic>Noise measurement</topic><topic>Parameter estimation</topic><topic>Parameter robustness</topic><topic>Process parameters</topic><topic>Reduced order models</topic><topic>Robustness (mathematics)</topic><topic>Rotation</topic><topic>Rotor-bearing systems</topic><topic>Simulation</topic><topic>State space models</topic><topic>System equivalent reduction expansion process</topic><topic>Unbalance</topic><topic>Unbalance identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shrivastava, Akash</creatorcontrib><creatorcontrib>Mohanty, A.R.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shrivastava, Akash</au><au>Mohanty, A.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of single plane unbalance parameters of a rotor-bearing system using Kalman filtering based force estimation technique</atitle><jtitle>Journal of sound and vibration</jtitle><date>2018-03-31</date><risdate>2018</risdate><volume>418</volume><spage>184</spage><epage>199</epage><pages>184-199</pages><issn>0022-460X</issn><eissn>1095-8568</eissn><abstract>This paper proposes a model-based method to estimate single plane unbalance parameters (amplitude and phase angle) in a rotor using Kalman filter and recursive least square based input force estimation technique. Kalman filter based input force estimation technique requires state-space model and response measurements. A modified system equivalent reduction expansion process (SEREP) technique is employed to obtain a reduced-order model of the rotor system so that limited response measurements can be used. The method is demonstrated using numerical simulations on a rotor-disk-bearing system. Results are presented for different measurement sets including displacement, velocity, and rotational response. Effects of measurement noise level, filter parameters (process noise covariance and forgetting factor), and modeling error are also presented and it is observed that the unbalance parameter estimation is robust with respect to measurement noise. •Kalman filter based unbalance parameter estimation technique is proposed.•Unbalance parameters are estimated after unbalance force estimation.•Effects of different measurement sets and noise levels are analyzed.•Unbalance parameter estimation is robust with respect to measurement noise.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2017.11.020</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-460X
ispartof Journal of sound and vibration, 2018-03, Vol.418, p.184-199
issn 0022-460X
1095-8568
language eng
recordid cdi_proquest_journals_2061052148
source Elsevier ScienceDirect Journals
subjects Bearings
Computer simulation
Covariance
Fault diagnosis
Filtration
Kalman filter
Kalman filters
Mathematical models
Model-based fault diagnosis
Noise measurement
Parameter estimation
Parameter robustness
Process parameters
Reduced order models
Robustness (mathematics)
Rotation
Rotor-bearing systems
Simulation
State space models
System equivalent reduction expansion process
Unbalance
Unbalance identification
title Estimation of single plane unbalance parameters of a rotor-bearing system using Kalman filtering based force estimation technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A10%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20single%20plane%20unbalance%20parameters%20of%20a%20rotor-bearing%20system%20using%20Kalman%20filtering%20based%20force%20estimation%20technique&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Shrivastava,%20Akash&rft.date=2018-03-31&rft.volume=418&rft.spage=184&rft.epage=199&rft.pages=184-199&rft.issn=0022-460X&rft.eissn=1095-8568&rft_id=info:doi/10.1016/j.jsv.2017.11.020&rft_dat=%3Cproquest_cross%3E2061052148%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2061052148&rft_id=info:pmid/&rft_els_id=S0022460X17307952&rfr_iscdi=true