Estimation of single plane unbalance parameters of a rotor-bearing system using Kalman filtering based force estimation technique
This paper proposes a model-based method to estimate single plane unbalance parameters (amplitude and phase angle) in a rotor using Kalman filter and recursive least square based input force estimation technique. Kalman filter based input force estimation technique requires state-space model and res...
Gespeichert in:
Veröffentlicht in: | Journal of sound and vibration 2018-03, Vol.418, p.184-199 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 199 |
---|---|
container_issue | |
container_start_page | 184 |
container_title | Journal of sound and vibration |
container_volume | 418 |
creator | Shrivastava, Akash Mohanty, A.R. |
description | This paper proposes a model-based method to estimate single plane unbalance parameters (amplitude and phase angle) in a rotor using Kalman filter and recursive least square based input force estimation technique. Kalman filter based input force estimation technique requires state-space model and response measurements. A modified system equivalent reduction expansion process (SEREP) technique is employed to obtain a reduced-order model of the rotor system so that limited response measurements can be used. The method is demonstrated using numerical simulations on a rotor-disk-bearing system. Results are presented for different measurement sets including displacement, velocity, and rotational response. Effects of measurement noise level, filter parameters (process noise covariance and forgetting factor), and modeling error are also presented and it is observed that the unbalance parameter estimation is robust with respect to measurement noise.
•Kalman filter based unbalance parameter estimation technique is proposed.•Unbalance parameters are estimated after unbalance force estimation.•Effects of different measurement sets and noise levels are analyzed.•Unbalance parameter estimation is robust with respect to measurement noise. |
doi_str_mv | 10.1016/j.jsv.2017.11.020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2061052148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X17307952</els_id><sourcerecordid>2061052148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-c67025556fc10e95281823ba7391b3314cdfc00635799163fbd6b2404f3f6e1e3</originalsourceid><addsrcrecordid>eNp9kE2LFDEQhoOs4OzqD_AW8NxtVdLJdONJlnWVHfCi4C2k0xVN09MZk8zCHv3nphnB257ywfPWWzyMvUVoEVC_n9s5P7YCcN8itiDgBdshDKrple6v2A5AiKbT8OMVu855BoChk92O_bnLJRxtCXHl0fMc1p8L8dNiV-LndbT14urbJnukQilvkOUplpiakWyqPM9PudCRn7cwf7DL0a7ch6Xi28doM03cx1Tn0P-yQu7XGn6f6TV76e2S6c2_84Z9_3T37fZzc_h6_-X246FxUqjSOL0HoZTS3iHQoESPvZCj3csBRymxc5N3AFqq_TCgln6c9Cg66Lz0mpDkDXt3mXtKsdbmYuZ4TmutNAI0ghLY9ZXCC-VSzDmRN6dUV05PBsFsps1sqmmzmTaIppqumQ-XDNX1HwMlk12g6m0KiVwxUwzPpP8CxRSIHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2061052148</pqid></control><display><type>article</type><title>Estimation of single plane unbalance parameters of a rotor-bearing system using Kalman filtering based force estimation technique</title><source>Elsevier ScienceDirect Journals</source><creator>Shrivastava, Akash ; Mohanty, A.R.</creator><creatorcontrib>Shrivastava, Akash ; Mohanty, A.R.</creatorcontrib><description>This paper proposes a model-based method to estimate single plane unbalance parameters (amplitude and phase angle) in a rotor using Kalman filter and recursive least square based input force estimation technique. Kalman filter based input force estimation technique requires state-space model and response measurements. A modified system equivalent reduction expansion process (SEREP) technique is employed to obtain a reduced-order model of the rotor system so that limited response measurements can be used. The method is demonstrated using numerical simulations on a rotor-disk-bearing system. Results are presented for different measurement sets including displacement, velocity, and rotational response. Effects of measurement noise level, filter parameters (process noise covariance and forgetting factor), and modeling error are also presented and it is observed that the unbalance parameter estimation is robust with respect to measurement noise.
•Kalman filter based unbalance parameter estimation technique is proposed.•Unbalance parameters are estimated after unbalance force estimation.•Effects of different measurement sets and noise levels are analyzed.•Unbalance parameter estimation is robust with respect to measurement noise.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2017.11.020</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Bearings ; Computer simulation ; Covariance ; Fault diagnosis ; Filtration ; Kalman filter ; Kalman filters ; Mathematical models ; Model-based fault diagnosis ; Noise measurement ; Parameter estimation ; Parameter robustness ; Process parameters ; Reduced order models ; Robustness (mathematics) ; Rotation ; Rotor-bearing systems ; Simulation ; State space models ; System equivalent reduction expansion process ; Unbalance ; Unbalance identification</subject><ispartof>Journal of sound and vibration, 2018-03, Vol.418, p.184-199</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Mar 31, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-c67025556fc10e95281823ba7391b3314cdfc00635799163fbd6b2404f3f6e1e3</citedby><cites>FETCH-LOGICAL-c325t-c67025556fc10e95281823ba7391b3314cdfc00635799163fbd6b2404f3f6e1e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jsv.2017.11.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Shrivastava, Akash</creatorcontrib><creatorcontrib>Mohanty, A.R.</creatorcontrib><title>Estimation of single plane unbalance parameters of a rotor-bearing system using Kalman filtering based force estimation technique</title><title>Journal of sound and vibration</title><description>This paper proposes a model-based method to estimate single plane unbalance parameters (amplitude and phase angle) in a rotor using Kalman filter and recursive least square based input force estimation technique. Kalman filter based input force estimation technique requires state-space model and response measurements. A modified system equivalent reduction expansion process (SEREP) technique is employed to obtain a reduced-order model of the rotor system so that limited response measurements can be used. The method is demonstrated using numerical simulations on a rotor-disk-bearing system. Results are presented for different measurement sets including displacement, velocity, and rotational response. Effects of measurement noise level, filter parameters (process noise covariance and forgetting factor), and modeling error are also presented and it is observed that the unbalance parameter estimation is robust with respect to measurement noise.
•Kalman filter based unbalance parameter estimation technique is proposed.•Unbalance parameters are estimated after unbalance force estimation.•Effects of different measurement sets and noise levels are analyzed.•Unbalance parameter estimation is robust with respect to measurement noise.</description><subject>Bearings</subject><subject>Computer simulation</subject><subject>Covariance</subject><subject>Fault diagnosis</subject><subject>Filtration</subject><subject>Kalman filter</subject><subject>Kalman filters</subject><subject>Mathematical models</subject><subject>Model-based fault diagnosis</subject><subject>Noise measurement</subject><subject>Parameter estimation</subject><subject>Parameter robustness</subject><subject>Process parameters</subject><subject>Reduced order models</subject><subject>Robustness (mathematics)</subject><subject>Rotation</subject><subject>Rotor-bearing systems</subject><subject>Simulation</subject><subject>State space models</subject><subject>System equivalent reduction expansion process</subject><subject>Unbalance</subject><subject>Unbalance identification</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE2LFDEQhoOs4OzqD_AW8NxtVdLJdONJlnWVHfCi4C2k0xVN09MZk8zCHv3nphnB257ywfPWWzyMvUVoEVC_n9s5P7YCcN8itiDgBdshDKrple6v2A5AiKbT8OMVu855BoChk92O_bnLJRxtCXHl0fMc1p8L8dNiV-LndbT14urbJnukQilvkOUplpiakWyqPM9PudCRn7cwf7DL0a7ch6Xi28doM03cx1Tn0P-yQu7XGn6f6TV76e2S6c2_84Z9_3T37fZzc_h6_-X246FxUqjSOL0HoZTS3iHQoESPvZCj3csBRymxc5N3AFqq_TCgln6c9Cg66Lz0mpDkDXt3mXtKsdbmYuZ4TmutNAI0ghLY9ZXCC-VSzDmRN6dUV05PBsFsps1sqmmzmTaIppqumQ-XDNX1HwMlk12g6m0KiVwxUwzPpP8CxRSIHw</recordid><startdate>20180331</startdate><enddate>20180331</enddate><creator>Shrivastava, Akash</creator><creator>Mohanty, A.R.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20180331</creationdate><title>Estimation of single plane unbalance parameters of a rotor-bearing system using Kalman filtering based force estimation technique</title><author>Shrivastava, Akash ; Mohanty, A.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-c67025556fc10e95281823ba7391b3314cdfc00635799163fbd6b2404f3f6e1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bearings</topic><topic>Computer simulation</topic><topic>Covariance</topic><topic>Fault diagnosis</topic><topic>Filtration</topic><topic>Kalman filter</topic><topic>Kalman filters</topic><topic>Mathematical models</topic><topic>Model-based fault diagnosis</topic><topic>Noise measurement</topic><topic>Parameter estimation</topic><topic>Parameter robustness</topic><topic>Process parameters</topic><topic>Reduced order models</topic><topic>Robustness (mathematics)</topic><topic>Rotation</topic><topic>Rotor-bearing systems</topic><topic>Simulation</topic><topic>State space models</topic><topic>System equivalent reduction expansion process</topic><topic>Unbalance</topic><topic>Unbalance identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shrivastava, Akash</creatorcontrib><creatorcontrib>Mohanty, A.R.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shrivastava, Akash</au><au>Mohanty, A.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of single plane unbalance parameters of a rotor-bearing system using Kalman filtering based force estimation technique</atitle><jtitle>Journal of sound and vibration</jtitle><date>2018-03-31</date><risdate>2018</risdate><volume>418</volume><spage>184</spage><epage>199</epage><pages>184-199</pages><issn>0022-460X</issn><eissn>1095-8568</eissn><abstract>This paper proposes a model-based method to estimate single plane unbalance parameters (amplitude and phase angle) in a rotor using Kalman filter and recursive least square based input force estimation technique. Kalman filter based input force estimation technique requires state-space model and response measurements. A modified system equivalent reduction expansion process (SEREP) technique is employed to obtain a reduced-order model of the rotor system so that limited response measurements can be used. The method is demonstrated using numerical simulations on a rotor-disk-bearing system. Results are presented for different measurement sets including displacement, velocity, and rotational response. Effects of measurement noise level, filter parameters (process noise covariance and forgetting factor), and modeling error are also presented and it is observed that the unbalance parameter estimation is robust with respect to measurement noise.
•Kalman filter based unbalance parameter estimation technique is proposed.•Unbalance parameters are estimated after unbalance force estimation.•Effects of different measurement sets and noise levels are analyzed.•Unbalance parameter estimation is robust with respect to measurement noise.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2017.11.020</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-460X |
ispartof | Journal of sound and vibration, 2018-03, Vol.418, p.184-199 |
issn | 0022-460X 1095-8568 |
language | eng |
recordid | cdi_proquest_journals_2061052148 |
source | Elsevier ScienceDirect Journals |
subjects | Bearings Computer simulation Covariance Fault diagnosis Filtration Kalman filter Kalman filters Mathematical models Model-based fault diagnosis Noise measurement Parameter estimation Parameter robustness Process parameters Reduced order models Robustness (mathematics) Rotation Rotor-bearing systems Simulation State space models System equivalent reduction expansion process Unbalance Unbalance identification |
title | Estimation of single plane unbalance parameters of a rotor-bearing system using Kalman filtering based force estimation technique |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A10%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20single%20plane%20unbalance%20parameters%20of%20a%20rotor-bearing%20system%20using%20Kalman%20filtering%20based%20force%20estimation%20technique&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Shrivastava,%20Akash&rft.date=2018-03-31&rft.volume=418&rft.spage=184&rft.epage=199&rft.pages=184-199&rft.issn=0022-460X&rft.eissn=1095-8568&rft_id=info:doi/10.1016/j.jsv.2017.11.020&rft_dat=%3Cproquest_cross%3E2061052148%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2061052148&rft_id=info:pmid/&rft_els_id=S0022460X17307952&rfr_iscdi=true |