Predicting the Big 5 personality traits from digital footprints on social media: A meta-analysis

The growing use of social media among Internet users produces a vast and new source of user generated ecological data, such as textual posts and images, which can be collected for research purposes. The increasing convergence between social and computer sciences has led researchers to develop automa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Personality and individual differences 2018-04, Vol.124, p.150-159
Hauptverfasser: Azucar, Danny, Marengo, Davide, Settanni, Michele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 159
container_issue
container_start_page 150
container_title Personality and individual differences
container_volume 124
creator Azucar, Danny
Marengo, Davide
Settanni, Michele
description The growing use of social media among Internet users produces a vast and new source of user generated ecological data, such as textual posts and images, which can be collected for research purposes. The increasing convergence between social and computer sciences has led researchers to develop automated methods to extract and analyze these digital footprints to predict personality traits. These social media-based predictions can then be used for a variety of purposes, including tailoring online services to improve user experience, enhance recommender systems, and as a possible screening and implementation tool for public health. In this paper, we conduct a series of meta-analyses to determine the predictive power of digital footprints collected from social media over Big 5 personality traits. Further, we investigate the impact of different types of digital footprints on prediction accuracy. Results of analyses show that the predictive power of digital footprints over personality traits is in line with the standard “correlational upper-limit” for behavior to predict personality, with correlations ranging from 0.29 (Agreeableness) to 0.40 (Extraversion). Overall, our findings indicate that accuracy of predictions is consistent across Big 5 traits, and that accuracy improves when analyses include demographics and multiple types of digital footprints. •This is a meta-analysis on the use of social media data to predict Big 5 traits.•We investigate use of different digital footprints including text and pictures.•Accuracy of prediction is consistent across Big 5 traits.•Use of multiple types of digital footprints increases prediction accuracy.
doi_str_mv 10.1016/j.paid.2017.12.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2061050081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0191886917307328</els_id><sourcerecordid>2061050081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-f42f2922d449275517b8e7695653cacd8776a694227025898b24d704df313b9b3</originalsourceid><addsrcrecordid>eNp9UEtPAyEYJEYT6-MPeCLxvCuwsIDxUhtfSRM96BlZYCubdlmBmvTfS1PPnr4vk5nJzABwhVGNEW5vhnrS3tYEYV5jUiMsjsAMC95UDaPyGMwQlrgSopWn4CylASHEGJEz8PkWnfUm-3EF85eD934FGZxcTGHUa593MEftc4J9DBto_cpnvYZ9CHmKfix4GGEKxhdwU4z0LZyXJ-tKF_ku-XQBTnq9Tu7y756Dj8eH98VztXx9elnMl5VpJM1VT0lPJCGWUkk4Y5h3wvFWspY1RhsrOG91KykhHBEmpOgItRxR2ze46WTXnIPrg-8Uw_fWpayGsI0lRFIEtRgxhAQuLHJgmRhSiq5XpcZGx53CSO2XVIPaL6n2SypMVFmyiO4OIlfy_3gXVTLejab0jc5kZYP_T_4LL5Z7Mw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2061050081</pqid></control><display><type>article</type><title>Predicting the Big 5 personality traits from digital footprints on social media: A meta-analysis</title><source>Elsevier ScienceDirect Journals Complete</source><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><creator>Azucar, Danny ; Marengo, Davide ; Settanni, Michele</creator><creatorcontrib>Azucar, Danny ; Marengo, Davide ; Settanni, Michele</creatorcontrib><description>The growing use of social media among Internet users produces a vast and new source of user generated ecological data, such as textual posts and images, which can be collected for research purposes. The increasing convergence between social and computer sciences has led researchers to develop automated methods to extract and analyze these digital footprints to predict personality traits. These social media-based predictions can then be used for a variety of purposes, including tailoring online services to improve user experience, enhance recommender systems, and as a possible screening and implementation tool for public health. In this paper, we conduct a series of meta-analyses to determine the predictive power of digital footprints collected from social media over Big 5 personality traits. Further, we investigate the impact of different types of digital footprints on prediction accuracy. Results of analyses show that the predictive power of digital footprints over personality traits is in line with the standard “correlational upper-limit” for behavior to predict personality, with correlations ranging from 0.29 (Agreeableness) to 0.40 (Extraversion). Overall, our findings indicate that accuracy of predictions is consistent across Big 5 traits, and that accuracy improves when analyses include demographics and multiple types of digital footprints. •This is a meta-analysis on the use of social media data to predict Big 5 traits.•We investigate use of different digital footprints including text and pictures.•Accuracy of prediction is consistent across Big 5 traits.•Use of multiple types of digital footprints increases prediction accuracy.</description><identifier>ISSN: 0191-8869</identifier><identifier>EISSN: 1873-3549</identifier><identifier>DOI: 10.1016/j.paid.2017.12.018</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Agreeableness ; Big 5 traits ; Computer science ; Convergence ; Data mining ; Digital footprint ; Extraversion ; Footprints ; Meta-analysis ; Personality ; Personality traits ; Power ; Predictive modeling ; Public health ; Social media</subject><ispartof>Personality and individual differences, 2018-04, Vol.124, p.150-159</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Apr 1, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-f42f2922d449275517b8e7695653cacd8776a694227025898b24d704df313b9b3</citedby><cites>FETCH-LOGICAL-c394t-f42f2922d449275517b8e7695653cacd8776a694227025898b24d704df313b9b3</cites><orcidid>0000-0002-7107-0810</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.paid.2017.12.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,30999,45995</link.rule.ids></links><search><creatorcontrib>Azucar, Danny</creatorcontrib><creatorcontrib>Marengo, Davide</creatorcontrib><creatorcontrib>Settanni, Michele</creatorcontrib><title>Predicting the Big 5 personality traits from digital footprints on social media: A meta-analysis</title><title>Personality and individual differences</title><description>The growing use of social media among Internet users produces a vast and new source of user generated ecological data, such as textual posts and images, which can be collected for research purposes. The increasing convergence between social and computer sciences has led researchers to develop automated methods to extract and analyze these digital footprints to predict personality traits. These social media-based predictions can then be used for a variety of purposes, including tailoring online services to improve user experience, enhance recommender systems, and as a possible screening and implementation tool for public health. In this paper, we conduct a series of meta-analyses to determine the predictive power of digital footprints collected from social media over Big 5 personality traits. Further, we investigate the impact of different types of digital footprints on prediction accuracy. Results of analyses show that the predictive power of digital footprints over personality traits is in line with the standard “correlational upper-limit” for behavior to predict personality, with correlations ranging from 0.29 (Agreeableness) to 0.40 (Extraversion). Overall, our findings indicate that accuracy of predictions is consistent across Big 5 traits, and that accuracy improves when analyses include demographics and multiple types of digital footprints. •This is a meta-analysis on the use of social media data to predict Big 5 traits.•We investigate use of different digital footprints including text and pictures.•Accuracy of prediction is consistent across Big 5 traits.•Use of multiple types of digital footprints increases prediction accuracy.</description><subject>Agreeableness</subject><subject>Big 5 traits</subject><subject>Computer science</subject><subject>Convergence</subject><subject>Data mining</subject><subject>Digital footprint</subject><subject>Extraversion</subject><subject>Footprints</subject><subject>Meta-analysis</subject><subject>Personality</subject><subject>Personality traits</subject><subject>Power</subject><subject>Predictive modeling</subject><subject>Public health</subject><subject>Social media</subject><issn>0191-8869</issn><issn>1873-3549</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><recordid>eNp9UEtPAyEYJEYT6-MPeCLxvCuwsIDxUhtfSRM96BlZYCubdlmBmvTfS1PPnr4vk5nJzABwhVGNEW5vhnrS3tYEYV5jUiMsjsAMC95UDaPyGMwQlrgSopWn4CylASHEGJEz8PkWnfUm-3EF85eD934FGZxcTGHUa593MEftc4J9DBto_cpnvYZ9CHmKfix4GGEKxhdwU4z0LZyXJ-tKF_ku-XQBTnq9Tu7y756Dj8eH98VztXx9elnMl5VpJM1VT0lPJCGWUkk4Y5h3wvFWspY1RhsrOG91KykhHBEmpOgItRxR2ze46WTXnIPrg-8Uw_fWpayGsI0lRFIEtRgxhAQuLHJgmRhSiq5XpcZGx53CSO2XVIPaL6n2SypMVFmyiO4OIlfy_3gXVTLejab0jc5kZYP_T_4LL5Z7Mw</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Azucar, Danny</creator><creator>Marengo, Davide</creator><creator>Settanni, Michele</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><orcidid>https://orcid.org/0000-0002-7107-0810</orcidid></search><sort><creationdate>20180401</creationdate><title>Predicting the Big 5 personality traits from digital footprints on social media: A meta-analysis</title><author>Azucar, Danny ; Marengo, Davide ; Settanni, Michele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-f42f2922d449275517b8e7695653cacd8776a694227025898b24d704df313b9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agreeableness</topic><topic>Big 5 traits</topic><topic>Computer science</topic><topic>Convergence</topic><topic>Data mining</topic><topic>Digital footprint</topic><topic>Extraversion</topic><topic>Footprints</topic><topic>Meta-analysis</topic><topic>Personality</topic><topic>Personality traits</topic><topic>Power</topic><topic>Predictive modeling</topic><topic>Public health</topic><topic>Social media</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azucar, Danny</creatorcontrib><creatorcontrib>Marengo, Davide</creatorcontrib><creatorcontrib>Settanni, Michele</creatorcontrib><collection>CrossRef</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><jtitle>Personality and individual differences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azucar, Danny</au><au>Marengo, Davide</au><au>Settanni, Michele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting the Big 5 personality traits from digital footprints on social media: A meta-analysis</atitle><jtitle>Personality and individual differences</jtitle><date>2018-04-01</date><risdate>2018</risdate><volume>124</volume><spage>150</spage><epage>159</epage><pages>150-159</pages><issn>0191-8869</issn><eissn>1873-3549</eissn><abstract>The growing use of social media among Internet users produces a vast and new source of user generated ecological data, such as textual posts and images, which can be collected for research purposes. The increasing convergence between social and computer sciences has led researchers to develop automated methods to extract and analyze these digital footprints to predict personality traits. These social media-based predictions can then be used for a variety of purposes, including tailoring online services to improve user experience, enhance recommender systems, and as a possible screening and implementation tool for public health. In this paper, we conduct a series of meta-analyses to determine the predictive power of digital footprints collected from social media over Big 5 personality traits. Further, we investigate the impact of different types of digital footprints on prediction accuracy. Results of analyses show that the predictive power of digital footprints over personality traits is in line with the standard “correlational upper-limit” for behavior to predict personality, with correlations ranging from 0.29 (Agreeableness) to 0.40 (Extraversion). Overall, our findings indicate that accuracy of predictions is consistent across Big 5 traits, and that accuracy improves when analyses include demographics and multiple types of digital footprints. •This is a meta-analysis on the use of social media data to predict Big 5 traits.•We investigate use of different digital footprints including text and pictures.•Accuracy of prediction is consistent across Big 5 traits.•Use of multiple types of digital footprints increases prediction accuracy.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.paid.2017.12.018</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7107-0810</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0191-8869
ispartof Personality and individual differences, 2018-04, Vol.124, p.150-159
issn 0191-8869
1873-3549
language eng
recordid cdi_proquest_journals_2061050081
source Elsevier ScienceDirect Journals Complete; Applied Social Sciences Index & Abstracts (ASSIA)
subjects Agreeableness
Big 5 traits
Computer science
Convergence
Data mining
Digital footprint
Extraversion
Footprints
Meta-analysis
Personality
Personality traits
Power
Predictive modeling
Public health
Social media
title Predicting the Big 5 personality traits from digital footprints on social media: A meta-analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A05%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20the%20Big%205%20personality%20traits%20from%20digital%20footprints%20on%20social%20media:%20A%20meta-analysis&rft.jtitle=Personality%20and%20individual%20differences&rft.au=Azucar,%20Danny&rft.date=2018-04-01&rft.volume=124&rft.spage=150&rft.epage=159&rft.pages=150-159&rft.issn=0191-8869&rft.eissn=1873-3549&rft_id=info:doi/10.1016/j.paid.2017.12.018&rft_dat=%3Cproquest_cross%3E2061050081%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2061050081&rft_id=info:pmid/&rft_els_id=S0191886917307328&rfr_iscdi=true