Predicting the Big 5 personality traits from digital footprints on social media: A meta-analysis
The growing use of social media among Internet users produces a vast and new source of user generated ecological data, such as textual posts and images, which can be collected for research purposes. The increasing convergence between social and computer sciences has led researchers to develop automa...
Gespeichert in:
Veröffentlicht in: | Personality and individual differences 2018-04, Vol.124, p.150-159 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 159 |
---|---|
container_issue | |
container_start_page | 150 |
container_title | Personality and individual differences |
container_volume | 124 |
creator | Azucar, Danny Marengo, Davide Settanni, Michele |
description | The growing use of social media among Internet users produces a vast and new source of user generated ecological data, such as textual posts and images, which can be collected for research purposes. The increasing convergence between social and computer sciences has led researchers to develop automated methods to extract and analyze these digital footprints to predict personality traits. These social media-based predictions can then be used for a variety of purposes, including tailoring online services to improve user experience, enhance recommender systems, and as a possible screening and implementation tool for public health. In this paper, we conduct a series of meta-analyses to determine the predictive power of digital footprints collected from social media over Big 5 personality traits. Further, we investigate the impact of different types of digital footprints on prediction accuracy. Results of analyses show that the predictive power of digital footprints over personality traits is in line with the standard “correlational upper-limit” for behavior to predict personality, with correlations ranging from 0.29 (Agreeableness) to 0.40 (Extraversion). Overall, our findings indicate that accuracy of predictions is consistent across Big 5 traits, and that accuracy improves when analyses include demographics and multiple types of digital footprints.
•This is a meta-analysis on the use of social media data to predict Big 5 traits.•We investigate use of different digital footprints including text and pictures.•Accuracy of prediction is consistent across Big 5 traits.•Use of multiple types of digital footprints increases prediction accuracy. |
doi_str_mv | 10.1016/j.paid.2017.12.018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2061050081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0191886917307328</els_id><sourcerecordid>2061050081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-f42f2922d449275517b8e7695653cacd8776a694227025898b24d704df313b9b3</originalsourceid><addsrcrecordid>eNp9UEtPAyEYJEYT6-MPeCLxvCuwsIDxUhtfSRM96BlZYCubdlmBmvTfS1PPnr4vk5nJzABwhVGNEW5vhnrS3tYEYV5jUiMsjsAMC95UDaPyGMwQlrgSopWn4CylASHEGJEz8PkWnfUm-3EF85eD934FGZxcTGHUa593MEftc4J9DBto_cpnvYZ9CHmKfix4GGEKxhdwU4z0LZyXJ-tKF_ku-XQBTnq9Tu7y756Dj8eH98VztXx9elnMl5VpJM1VT0lPJCGWUkk4Y5h3wvFWspY1RhsrOG91KykhHBEmpOgItRxR2ze46WTXnIPrg-8Uw_fWpayGsI0lRFIEtRgxhAQuLHJgmRhSiq5XpcZGx53CSO2XVIPaL6n2SypMVFmyiO4OIlfy_3gXVTLejab0jc5kZYP_T_4LL5Z7Mw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2061050081</pqid></control><display><type>article</type><title>Predicting the Big 5 personality traits from digital footprints on social media: A meta-analysis</title><source>Elsevier ScienceDirect Journals Complete</source><source>Applied Social Sciences Index & Abstracts (ASSIA)</source><creator>Azucar, Danny ; Marengo, Davide ; Settanni, Michele</creator><creatorcontrib>Azucar, Danny ; Marengo, Davide ; Settanni, Michele</creatorcontrib><description>The growing use of social media among Internet users produces a vast and new source of user generated ecological data, such as textual posts and images, which can be collected for research purposes. The increasing convergence between social and computer sciences has led researchers to develop automated methods to extract and analyze these digital footprints to predict personality traits. These social media-based predictions can then be used for a variety of purposes, including tailoring online services to improve user experience, enhance recommender systems, and as a possible screening and implementation tool for public health. In this paper, we conduct a series of meta-analyses to determine the predictive power of digital footprints collected from social media over Big 5 personality traits. Further, we investigate the impact of different types of digital footprints on prediction accuracy. Results of analyses show that the predictive power of digital footprints over personality traits is in line with the standard “correlational upper-limit” for behavior to predict personality, with correlations ranging from 0.29 (Agreeableness) to 0.40 (Extraversion). Overall, our findings indicate that accuracy of predictions is consistent across Big 5 traits, and that accuracy improves when analyses include demographics and multiple types of digital footprints.
•This is a meta-analysis on the use of social media data to predict Big 5 traits.•We investigate use of different digital footprints including text and pictures.•Accuracy of prediction is consistent across Big 5 traits.•Use of multiple types of digital footprints increases prediction accuracy.</description><identifier>ISSN: 0191-8869</identifier><identifier>EISSN: 1873-3549</identifier><identifier>DOI: 10.1016/j.paid.2017.12.018</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Agreeableness ; Big 5 traits ; Computer science ; Convergence ; Data mining ; Digital footprint ; Extraversion ; Footprints ; Meta-analysis ; Personality ; Personality traits ; Power ; Predictive modeling ; Public health ; Social media</subject><ispartof>Personality and individual differences, 2018-04, Vol.124, p.150-159</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Apr 1, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-f42f2922d449275517b8e7695653cacd8776a694227025898b24d704df313b9b3</citedby><cites>FETCH-LOGICAL-c394t-f42f2922d449275517b8e7695653cacd8776a694227025898b24d704df313b9b3</cites><orcidid>0000-0002-7107-0810</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.paid.2017.12.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,30999,45995</link.rule.ids></links><search><creatorcontrib>Azucar, Danny</creatorcontrib><creatorcontrib>Marengo, Davide</creatorcontrib><creatorcontrib>Settanni, Michele</creatorcontrib><title>Predicting the Big 5 personality traits from digital footprints on social media: A meta-analysis</title><title>Personality and individual differences</title><description>The growing use of social media among Internet users produces a vast and new source of user generated ecological data, such as textual posts and images, which can be collected for research purposes. The increasing convergence between social and computer sciences has led researchers to develop automated methods to extract and analyze these digital footprints to predict personality traits. These social media-based predictions can then be used for a variety of purposes, including tailoring online services to improve user experience, enhance recommender systems, and as a possible screening and implementation tool for public health. In this paper, we conduct a series of meta-analyses to determine the predictive power of digital footprints collected from social media over Big 5 personality traits. Further, we investigate the impact of different types of digital footprints on prediction accuracy. Results of analyses show that the predictive power of digital footprints over personality traits is in line with the standard “correlational upper-limit” for behavior to predict personality, with correlations ranging from 0.29 (Agreeableness) to 0.40 (Extraversion). Overall, our findings indicate that accuracy of predictions is consistent across Big 5 traits, and that accuracy improves when analyses include demographics and multiple types of digital footprints.
•This is a meta-analysis on the use of social media data to predict Big 5 traits.•We investigate use of different digital footprints including text and pictures.•Accuracy of prediction is consistent across Big 5 traits.•Use of multiple types of digital footprints increases prediction accuracy.</description><subject>Agreeableness</subject><subject>Big 5 traits</subject><subject>Computer science</subject><subject>Convergence</subject><subject>Data mining</subject><subject>Digital footprint</subject><subject>Extraversion</subject><subject>Footprints</subject><subject>Meta-analysis</subject><subject>Personality</subject><subject>Personality traits</subject><subject>Power</subject><subject>Predictive modeling</subject><subject>Public health</subject><subject>Social media</subject><issn>0191-8869</issn><issn>1873-3549</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><recordid>eNp9UEtPAyEYJEYT6-MPeCLxvCuwsIDxUhtfSRM96BlZYCubdlmBmvTfS1PPnr4vk5nJzABwhVGNEW5vhnrS3tYEYV5jUiMsjsAMC95UDaPyGMwQlrgSopWn4CylASHEGJEz8PkWnfUm-3EF85eD934FGZxcTGHUa593MEftc4J9DBto_cpnvYZ9CHmKfix4GGEKxhdwU4z0LZyXJ-tKF_ku-XQBTnq9Tu7y756Dj8eH98VztXx9elnMl5VpJM1VT0lPJCGWUkk4Y5h3wvFWspY1RhsrOG91KykhHBEmpOgItRxR2ze46WTXnIPrg-8Uw_fWpayGsI0lRFIEtRgxhAQuLHJgmRhSiq5XpcZGx53CSO2XVIPaL6n2SypMVFmyiO4OIlfy_3gXVTLejab0jc5kZYP_T_4LL5Z7Mw</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Azucar, Danny</creator><creator>Marengo, Davide</creator><creator>Settanni, Michele</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><orcidid>https://orcid.org/0000-0002-7107-0810</orcidid></search><sort><creationdate>20180401</creationdate><title>Predicting the Big 5 personality traits from digital footprints on social media: A meta-analysis</title><author>Azucar, Danny ; Marengo, Davide ; Settanni, Michele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-f42f2922d449275517b8e7695653cacd8776a694227025898b24d704df313b9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agreeableness</topic><topic>Big 5 traits</topic><topic>Computer science</topic><topic>Convergence</topic><topic>Data mining</topic><topic>Digital footprint</topic><topic>Extraversion</topic><topic>Footprints</topic><topic>Meta-analysis</topic><topic>Personality</topic><topic>Personality traits</topic><topic>Power</topic><topic>Predictive modeling</topic><topic>Public health</topic><topic>Social media</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azucar, Danny</creatorcontrib><creatorcontrib>Marengo, Davide</creatorcontrib><creatorcontrib>Settanni, Michele</creatorcontrib><collection>CrossRef</collection><collection>Applied Social Sciences Index & Abstracts (ASSIA)</collection><jtitle>Personality and individual differences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azucar, Danny</au><au>Marengo, Davide</au><au>Settanni, Michele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting the Big 5 personality traits from digital footprints on social media: A meta-analysis</atitle><jtitle>Personality and individual differences</jtitle><date>2018-04-01</date><risdate>2018</risdate><volume>124</volume><spage>150</spage><epage>159</epage><pages>150-159</pages><issn>0191-8869</issn><eissn>1873-3549</eissn><abstract>The growing use of social media among Internet users produces a vast and new source of user generated ecological data, such as textual posts and images, which can be collected for research purposes. The increasing convergence between social and computer sciences has led researchers to develop automated methods to extract and analyze these digital footprints to predict personality traits. These social media-based predictions can then be used for a variety of purposes, including tailoring online services to improve user experience, enhance recommender systems, and as a possible screening and implementation tool for public health. In this paper, we conduct a series of meta-analyses to determine the predictive power of digital footprints collected from social media over Big 5 personality traits. Further, we investigate the impact of different types of digital footprints on prediction accuracy. Results of analyses show that the predictive power of digital footprints over personality traits is in line with the standard “correlational upper-limit” for behavior to predict personality, with correlations ranging from 0.29 (Agreeableness) to 0.40 (Extraversion). Overall, our findings indicate that accuracy of predictions is consistent across Big 5 traits, and that accuracy improves when analyses include demographics and multiple types of digital footprints.
•This is a meta-analysis on the use of social media data to predict Big 5 traits.•We investigate use of different digital footprints including text and pictures.•Accuracy of prediction is consistent across Big 5 traits.•Use of multiple types of digital footprints increases prediction accuracy.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.paid.2017.12.018</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7107-0810</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0191-8869 |
ispartof | Personality and individual differences, 2018-04, Vol.124, p.150-159 |
issn | 0191-8869 1873-3549 |
language | eng |
recordid | cdi_proquest_journals_2061050081 |
source | Elsevier ScienceDirect Journals Complete; Applied Social Sciences Index & Abstracts (ASSIA) |
subjects | Agreeableness Big 5 traits Computer science Convergence Data mining Digital footprint Extraversion Footprints Meta-analysis Personality Personality traits Power Predictive modeling Public health Social media |
title | Predicting the Big 5 personality traits from digital footprints on social media: A meta-analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A05%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20the%20Big%205%20personality%20traits%20from%20digital%20footprints%20on%20social%20media:%20A%20meta-analysis&rft.jtitle=Personality%20and%20individual%20differences&rft.au=Azucar,%20Danny&rft.date=2018-04-01&rft.volume=124&rft.spage=150&rft.epage=159&rft.pages=150-159&rft.issn=0191-8869&rft.eissn=1873-3549&rft_id=info:doi/10.1016/j.paid.2017.12.018&rft_dat=%3Cproquest_cross%3E2061050081%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2061050081&rft_id=info:pmid/&rft_els_id=S0191886917307328&rfr_iscdi=true |