Control of Substrate Specificity by Active-Site Residues in Nitrobenzene Dioxygenase

Nitrobenzene 1,2-dioxygenase from Comamonas sp. strain JS765 catalyzes the initial reaction in nitrobenzene degradation, forming catechol and nitrite. The enzyme also oxidizes the aromatic rings of mono- and dinitrotoluenes at the nitro-substituted carbon, but the basis for this specificity is not u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and Environmental Microbiology 2006-03, Vol.72 (3), p.1817-1824
Hauptverfasser: Ju, Kou-San, Parales, Rebecca E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1824
container_issue 3
container_start_page 1817
container_title Applied and Environmental Microbiology
container_volume 72
creator Ju, Kou-San
Parales, Rebecca E
description Nitrobenzene 1,2-dioxygenase from Comamonas sp. strain JS765 catalyzes the initial reaction in nitrobenzene degradation, forming catechol and nitrite. The enzyme also oxidizes the aromatic rings of mono- and dinitrotoluenes at the nitro-substituted carbon, but the basis for this specificity is not understood. In this study, site-directed mutagenesis was used to modify the active site of nitrobenzene dioxygenase, and the contribution of specific residues in controlling substrate specificity and enzyme performance was evaluated. The activities of six mutant enzymes indicated that the residues at positions 258, 293, and 350 in the [alpha] subunit are important for determining regiospecificity with nitroarene substrates and enantiospecificity with naphthalene. The results provide an explanation for the characteristic specificity with nitroarene substrates. Based on the structure of nitrobenzene dioxygenase, substitution of valine for the asparagine at position 258 should eliminate a hydrogen bond between the substrate nitro group and the amino group of asparagine. Up to 99% of the mononitrotoluene oxidation products formed by the N258V mutant were nitrobenzyl alcohols rather than catechols, supporting the importance of this hydrogen bond in positioning substrates in the active site for ring oxidation. Similar results were obtained with an I350F mutant, where the formation of the hydrogen bond appeared to be prevented by steric interference. The specificity of enzymes with substitutions at position 293 varied depending on the residue present. Compared to the wild type, the F293Q mutant was 2.5 times faster at oxidizing 2,6-dinitrotoluene while retaining a similar K[subscript m] for the substrate based on product formation rates and whole-cell kinetics.
doi_str_mv 10.1128/AEM.72.3.1817-1824.2006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_205978090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17120676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c619t-8a64158944bf55293ae17bc2f7dc0c9d5b1e60b4ba70f3af0d4d05a6b762ffa13</originalsourceid><addsrcrecordid>eNpdkV1v0zAUhiMEYt3gL7CABHcp59iJHd8gVWV8SAMkul1bjmO3npK42OlY-fU4akWBK1-c57w-r54su0SYI5L67eLqy5yTOZ1jjbzAmpRzAsAeZTMEURcVpexxNgMQoiCkhLPsPMY7ACiB1U-zM2QVckb4LLtZ-mEMvsu9zVe7Jo5BjSZfbY121mk37vNmny_06O5NsXJp9N1E1-5MzN2Qf3VptTHDLzOY_L3zD_u1GVQ0z7InVnXRPD--F9nth6ub5afi-tvHz8vFdaEZirGoFSuxqkVZNraqiKDKIG80sbzVoEVbNWgYNGWjOFiqLLRlC5ViTTrdWoX0Int3yN3umt602qQqqpPb4HoV9tIrJ_-dDG4j1_5eIhWUIKSAN8eA4H-kUqPsXdSm69Rg_C5K5EiAcZbAV_-Bd34XhlROEqgEr0FMafwA6eBjDMb-uQRBTtpk0iY5kVRO2uSkTU7a0uaLv4uc9o6eEvD6CKioVWeDGrSLJ45XouSUJO7lgdu49eanC0aq2Etl-tO3ibk8MFZ5qdYh5dyuCCAFTFUQOP0N1b62MQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205978090</pqid></control><display><type>article</type><title>Control of Substrate Specificity by Active-Site Residues in Nitrobenzene Dioxygenase</title><source>American Society for Microbiology</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Ju, Kou-San ; Parales, Rebecca E</creator><creatorcontrib>Ju, Kou-San ; Parales, Rebecca E</creatorcontrib><description>Nitrobenzene 1,2-dioxygenase from Comamonas sp. strain JS765 catalyzes the initial reaction in nitrobenzene degradation, forming catechol and nitrite. The enzyme also oxidizes the aromatic rings of mono- and dinitrotoluenes at the nitro-substituted carbon, but the basis for this specificity is not understood. In this study, site-directed mutagenesis was used to modify the active site of nitrobenzene dioxygenase, and the contribution of specific residues in controlling substrate specificity and enzyme performance was evaluated. The activities of six mutant enzymes indicated that the residues at positions 258, 293, and 350 in the [alpha] subunit are important for determining regiospecificity with nitroarene substrates and enantiospecificity with naphthalene. The results provide an explanation for the characteristic specificity with nitroarene substrates. Based on the structure of nitrobenzene dioxygenase, substitution of valine for the asparagine at position 258 should eliminate a hydrogen bond between the substrate nitro group and the amino group of asparagine. Up to 99% of the mononitrotoluene oxidation products formed by the N258V mutant were nitrobenzyl alcohols rather than catechols, supporting the importance of this hydrogen bond in positioning substrates in the active site for ring oxidation. Similar results were obtained with an I350F mutant, where the formation of the hydrogen bond appeared to be prevented by steric interference. The specificity of enzymes with substitutions at position 293 varied depending on the residue present. Compared to the wild type, the F293Q mutant was 2.5 times faster at oxidizing 2,6-dinitrotoluene while retaining a similar K[subscript m] for the substrate based on product formation rates and whole-cell kinetics.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>DOI: 10.1128/AEM.72.3.1817-1824.2006</identifier><identifier>PMID: 16517627</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>Binding Sites - genetics ; Biological and medical sciences ; Biotechnology ; Comamonas ; Comamonas - enzymology ; Comamonas - genetics ; Dinitrobenzenes - metabolism ; Dioxygenases - chemistry ; Dioxygenases - genetics ; Dioxygenases - metabolism ; Enzymes ; Enzymology and Protein Engineering ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Bacterial ; Hydrocarbons ; Microbiology ; Mutagenesis, Site-Directed ; Nitrobenzenes - metabolism ; Oxidation ; Substrate Specificity</subject><ispartof>Applied and Environmental Microbiology, 2006-03, Vol.72 (3), p.1817-1824</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright American Society for Microbiology Mar 2006</rights><rights>Copyright © 2006, American Society for Microbiology 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c619t-8a64158944bf55293ae17bc2f7dc0c9d5b1e60b4ba70f3af0d4d05a6b762ffa13</citedby><cites>FETCH-LOGICAL-c619t-8a64158944bf55293ae17bc2f7dc0c9d5b1e60b4ba70f3af0d4d05a6b762ffa13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1393210/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1393210/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,3179,3180,27915,27916,53782,53784</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17594732$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16517627$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ju, Kou-San</creatorcontrib><creatorcontrib>Parales, Rebecca E</creatorcontrib><title>Control of Substrate Specificity by Active-Site Residues in Nitrobenzene Dioxygenase</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>Nitrobenzene 1,2-dioxygenase from Comamonas sp. strain JS765 catalyzes the initial reaction in nitrobenzene degradation, forming catechol and nitrite. The enzyme also oxidizes the aromatic rings of mono- and dinitrotoluenes at the nitro-substituted carbon, but the basis for this specificity is not understood. In this study, site-directed mutagenesis was used to modify the active site of nitrobenzene dioxygenase, and the contribution of specific residues in controlling substrate specificity and enzyme performance was evaluated. The activities of six mutant enzymes indicated that the residues at positions 258, 293, and 350 in the [alpha] subunit are important for determining regiospecificity with nitroarene substrates and enantiospecificity with naphthalene. The results provide an explanation for the characteristic specificity with nitroarene substrates. Based on the structure of nitrobenzene dioxygenase, substitution of valine for the asparagine at position 258 should eliminate a hydrogen bond between the substrate nitro group and the amino group of asparagine. Up to 99% of the mononitrotoluene oxidation products formed by the N258V mutant were nitrobenzyl alcohols rather than catechols, supporting the importance of this hydrogen bond in positioning substrates in the active site for ring oxidation. Similar results were obtained with an I350F mutant, where the formation of the hydrogen bond appeared to be prevented by steric interference. The specificity of enzymes with substitutions at position 293 varied depending on the residue present. Compared to the wild type, the F293Q mutant was 2.5 times faster at oxidizing 2,6-dinitrotoluene while retaining a similar K[subscript m] for the substrate based on product formation rates and whole-cell kinetics.</description><subject>Binding Sites - genetics</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Comamonas</subject><subject>Comamonas - enzymology</subject><subject>Comamonas - genetics</subject><subject>Dinitrobenzenes - metabolism</subject><subject>Dioxygenases - chemistry</subject><subject>Dioxygenases - genetics</subject><subject>Dioxygenases - metabolism</subject><subject>Enzymes</subject><subject>Enzymology and Protein Engineering</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Hydrocarbons</subject><subject>Microbiology</subject><subject>Mutagenesis, Site-Directed</subject><subject>Nitrobenzenes - metabolism</subject><subject>Oxidation</subject><subject>Substrate Specificity</subject><issn>0099-2240</issn><issn>1098-5336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkV1v0zAUhiMEYt3gL7CABHcp59iJHd8gVWV8SAMkul1bjmO3npK42OlY-fU4akWBK1-c57w-r54su0SYI5L67eLqy5yTOZ1jjbzAmpRzAsAeZTMEURcVpexxNgMQoiCkhLPsPMY7ACiB1U-zM2QVckb4LLtZ-mEMvsu9zVe7Jo5BjSZfbY121mk37vNmny_06O5NsXJp9N1E1-5MzN2Qf3VptTHDLzOY_L3zD_u1GVQ0z7InVnXRPD--F9nth6ub5afi-tvHz8vFdaEZirGoFSuxqkVZNraqiKDKIG80sbzVoEVbNWgYNGWjOFiqLLRlC5ViTTrdWoX0Int3yN3umt602qQqqpPb4HoV9tIrJ_-dDG4j1_5eIhWUIKSAN8eA4H-kUqPsXdSm69Rg_C5K5EiAcZbAV_-Bd34XhlROEqgEr0FMafwA6eBjDMb-uQRBTtpk0iY5kVRO2uSkTU7a0uaLv4uc9o6eEvD6CKioVWeDGrSLJ45XouSUJO7lgdu49eanC0aq2Etl-tO3ibk8MFZ5qdYh5dyuCCAFTFUQOP0N1b62MQ</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>Ju, Kou-San</creator><creator>Parales, Rebecca E</creator><general>American Society for Microbiology</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope></search><sort><creationdate>20060301</creationdate><title>Control of Substrate Specificity by Active-Site Residues in Nitrobenzene Dioxygenase</title><author>Ju, Kou-San ; Parales, Rebecca E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c619t-8a64158944bf55293ae17bc2f7dc0c9d5b1e60b4ba70f3af0d4d05a6b762ffa13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Binding Sites - genetics</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Comamonas</topic><topic>Comamonas - enzymology</topic><topic>Comamonas - genetics</topic><topic>Dinitrobenzenes - metabolism</topic><topic>Dioxygenases - chemistry</topic><topic>Dioxygenases - genetics</topic><topic>Dioxygenases - metabolism</topic><topic>Enzymes</topic><topic>Enzymology and Protein Engineering</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Hydrocarbons</topic><topic>Microbiology</topic><topic>Mutagenesis, Site-Directed</topic><topic>Nitrobenzenes - metabolism</topic><topic>Oxidation</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ju, Kou-San</creatorcontrib><creatorcontrib>Parales, Rebecca E</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ju, Kou-San</au><au>Parales, Rebecca E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of Substrate Specificity by Active-Site Residues in Nitrobenzene Dioxygenase</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>2006-03-01</date><risdate>2006</risdate><volume>72</volume><issue>3</issue><spage>1817</spage><epage>1824</epage><pages>1817-1824</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><coden>AEMIDF</coden><abstract>Nitrobenzene 1,2-dioxygenase from Comamonas sp. strain JS765 catalyzes the initial reaction in nitrobenzene degradation, forming catechol and nitrite. The enzyme also oxidizes the aromatic rings of mono- and dinitrotoluenes at the nitro-substituted carbon, but the basis for this specificity is not understood. In this study, site-directed mutagenesis was used to modify the active site of nitrobenzene dioxygenase, and the contribution of specific residues in controlling substrate specificity and enzyme performance was evaluated. The activities of six mutant enzymes indicated that the residues at positions 258, 293, and 350 in the [alpha] subunit are important for determining regiospecificity with nitroarene substrates and enantiospecificity with naphthalene. The results provide an explanation for the characteristic specificity with nitroarene substrates. Based on the structure of nitrobenzene dioxygenase, substitution of valine for the asparagine at position 258 should eliminate a hydrogen bond between the substrate nitro group and the amino group of asparagine. Up to 99% of the mononitrotoluene oxidation products formed by the N258V mutant were nitrobenzyl alcohols rather than catechols, supporting the importance of this hydrogen bond in positioning substrates in the active site for ring oxidation. Similar results were obtained with an I350F mutant, where the formation of the hydrogen bond appeared to be prevented by steric interference. The specificity of enzymes with substitutions at position 293 varied depending on the residue present. Compared to the wild type, the F293Q mutant was 2.5 times faster at oxidizing 2,6-dinitrotoluene while retaining a similar K[subscript m] for the substrate based on product formation rates and whole-cell kinetics.</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>16517627</pmid><doi>10.1128/AEM.72.3.1817-1824.2006</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0099-2240
ispartof Applied and Environmental Microbiology, 2006-03, Vol.72 (3), p.1817-1824
issn 0099-2240
1098-5336
language eng
recordid cdi_proquest_journals_205978090
source American Society for Microbiology; MEDLINE; PubMed Central; Alma/SFX Local Collection
subjects Binding Sites - genetics
Biological and medical sciences
Biotechnology
Comamonas
Comamonas - enzymology
Comamonas - genetics
Dinitrobenzenes - metabolism
Dioxygenases - chemistry
Dioxygenases - genetics
Dioxygenases - metabolism
Enzymes
Enzymology and Protein Engineering
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation, Bacterial
Hydrocarbons
Microbiology
Mutagenesis, Site-Directed
Nitrobenzenes - metabolism
Oxidation
Substrate Specificity
title Control of Substrate Specificity by Active-Site Residues in Nitrobenzene Dioxygenase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A20%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20Substrate%20Specificity%20by%20Active-Site%20Residues%20in%20Nitrobenzene%20Dioxygenase&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=Ju,%20Kou-San&rft.date=2006-03-01&rft.volume=72&rft.issue=3&rft.spage=1817&rft.epage=1824&rft.pages=1817-1824&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/AEM.72.3.1817-1824.2006&rft_dat=%3Cproquest_cross%3E17120676%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205978090&rft_id=info:pmid/16517627&rfr_iscdi=true