Molecular Characterization of the Diversity and Distribution of a Thermal Spring Microbial Community by Using rRNA and Metabolic Genes
The diversity and distribution of a bacterial community from Coffee Pots Hot Spring, a thermal spring in Yellowstone National Park with a temperature range of 39.3 to 74.1°C and pH range of 5.75 to 6.91, were investigated by sequencing cloned PCR products and quantitative PCR (qPCR) of 16S rRNA and...
Gespeichert in:
Veröffentlicht in: | Applied and Environmental Microbiology 2008-08, Vol.74 (15), p.4910-4922 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4922 |
---|---|
container_issue | 15 |
container_start_page | 4910 |
container_title | Applied and Environmental Microbiology |
container_volume | 74 |
creator | Hall, Justine R Mitchell, Kendra R Jackson-Weaver, Olan Kooser, Ara S Cron, Brandi R Crossey, Laura J Takacs-Vesbach, Cristina D |
description | The diversity and distribution of a bacterial community from Coffee Pots Hot Spring, a thermal spring in Yellowstone National Park with a temperature range of 39.3 to 74.1°C and pH range of 5.75 to 6.91, were investigated by sequencing cloned PCR products and quantitative PCR (qPCR) of 16S rRNA and metabolic genes. The spring was inhabited by three Aquificae genera--Thermocrinis, Hydrogenobaculum, and SULFURIHYDROGENIBIUM:and members of the Alpha-, Beta-, and Gammaproteobacteria, Firmicutes, Acidobacteria, Deinococcus-Thermus, and candidate division OP5. The in situ chemical affinities were calculated for 41 potential metabolic reactions using measured environmental parameters and a range of hydrogen and oxygen concentrations. Reactions that use oxygen, ferric iron, sulfur, and nitrate as electron acceptors were predicted to be the most energetically favorable, while reactions using sulfate were expected to be less favorable. Samples were screened for genes used in ammonia oxidation (amoA, bacterial gene only), the reductive tricarboxylic acid (rTCA) cycle (aclB), the Calvin cycle (cbbM), sulfate reduction (dsrAB), nitrogen fixation (nifH), nitrite reduction (nirK), and sulfide oxidation (soxEF1) by PCR. Genes for carbon fixation by the rTCA cycle and nitrogen fixation were detected. All aclB sequences were phylogenetically related and spatially correlated to Sulfurihydrogenibium 16S rRNA gene sequences using qPCR (R² = 0.99). This result supports the recent finding of citrate cleavage by enzymes other than ATP citrate lyase in the rTCA cycle of the Aquificaceae family. We briefly consider potential biochemical mechanisms that may allow Sulfurihydrogenibium and Thermocrinis to codominate some hydrothermal environments. |
doi_str_mv | 10.1128/AEM.00233-08 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_205977279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21502422</sourcerecordid><originalsourceid>FETCH-LOGICAL-c587t-876f97790c4fe0213fc56c1ece3238448e2474b08f8deb6c89198c6c36209d8e3</originalsourceid><addsrcrecordid>eNpdkktv1DAUhS0EoqWwYw0REqxIuX4ksTdIo6EUpA5ItLO2HM_NxFUSt3ZSNPwAfjeezjA8VpZ9Px-fe48JeU7hlFIm383OFqcAjPMc5ANyTEHJvOC8fEiOAZTKGRNwRJ7EeA0AAkr5mBxRWXBVSXlMfi58h3bqTMjmrQnGjhjcDzM6P2S-ycYWsw_uDkN04yYzwyrt4hhcPf0mTHbVYuhNl13eBDess4WzwdcuHcx930_D9mK9yZZxWwzfvszuZRY4mtp3zmbnOGB8Sh41pov4bL-ekOXHs6v5p_zi6_nn-ewit4WsxlxWZaOqSoEVDQKjvLFFaSla5IxLISQyUYkaZCNXWJdWKqqkLS0vGaiVRH5C3u90b6a6x5XFYQym08l5b8JGe-P0v5XBtXrt7zQrqOIFJIE3e4HgbyeMo-5dtNh1ZkA_Rc1oAUwwlsBX_4HXfgpDak4zKFITrFIJeruD0shiDNgcnFDQ23R1Slffp6tBJvzF3-7_wPs4E_B6D5hoTdcEM1gXD1x6OI0xwQdzrVu3311AbWKvDfa6EpoWWii6bfXlDmqM12YdktDykgHl6Vux9JdK_gu798Jj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205977279</pqid></control><display><type>article</type><title>Molecular Characterization of the Diversity and Distribution of a Thermal Spring Microbial Community by Using rRNA and Metabolic Genes</title><source>American Society for Microbiology</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Hall, Justine R ; Mitchell, Kendra R ; Jackson-Weaver, Olan ; Kooser, Ara S ; Cron, Brandi R ; Crossey, Laura J ; Takacs-Vesbach, Cristina D</creator><creatorcontrib>Hall, Justine R ; Mitchell, Kendra R ; Jackson-Weaver, Olan ; Kooser, Ara S ; Cron, Brandi R ; Crossey, Laura J ; Takacs-Vesbach, Cristina D</creatorcontrib><description>The diversity and distribution of a bacterial community from Coffee Pots Hot Spring, a thermal spring in Yellowstone National Park with a temperature range of 39.3 to 74.1°C and pH range of 5.75 to 6.91, were investigated by sequencing cloned PCR products and quantitative PCR (qPCR) of 16S rRNA and metabolic genes. The spring was inhabited by three Aquificae genera--Thermocrinis, Hydrogenobaculum, and SULFURIHYDROGENIBIUM:and members of the Alpha-, Beta-, and Gammaproteobacteria, Firmicutes, Acidobacteria, Deinococcus-Thermus, and candidate division OP5. The in situ chemical affinities were calculated for 41 potential metabolic reactions using measured environmental parameters and a range of hydrogen and oxygen concentrations. Reactions that use oxygen, ferric iron, sulfur, and nitrate as electron acceptors were predicted to be the most energetically favorable, while reactions using sulfate were expected to be less favorable. Samples were screened for genes used in ammonia oxidation (amoA, bacterial gene only), the reductive tricarboxylic acid (rTCA) cycle (aclB), the Calvin cycle (cbbM), sulfate reduction (dsrAB), nitrogen fixation (nifH), nitrite reduction (nirK), and sulfide oxidation (soxEF1) by PCR. Genes for carbon fixation by the rTCA cycle and nitrogen fixation were detected. All aclB sequences were phylogenetically related and spatially correlated to Sulfurihydrogenibium 16S rRNA gene sequences using qPCR (R² = 0.99). This result supports the recent finding of citrate cleavage by enzymes other than ATP citrate lyase in the rTCA cycle of the Aquificaceae family. We briefly consider potential biochemical mechanisms that may allow Sulfurihydrogenibium and Thermocrinis to codominate some hydrothermal environments.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>EISSN: 1098-6596</identifier><identifier>DOI: 10.1128/AEM.00233-08</identifier><identifier>PMID: 18539788</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>Aquificae ; ATP ; Bacteria ; Bacteria - classification ; Bacteria - genetics ; Bacteria - isolation & purification ; Biodiversity ; Biological and medical sciences ; Cloning ; Correlation analysis ; DNA Primers ; Environment ; Enzymes ; Fresh Water - chemistry ; Fresh Water - microbiology ; Fundamental and applied biological sciences. Psychology ; Genes ; Genetic Variation ; Hot Springs - chemistry ; Hot Springs - microbiology ; Hydrogen - analysis ; Microbial Ecology ; Microbiology ; Molecular Sequence Data ; New Mexico ; Oxygen - analysis ; Phylogeny ; Polymerase Chain Reaction - methods ; Ribonucleic acid ; RNA ; RNA, Ribosomal - genetics ; Temperature</subject><ispartof>Applied and Environmental Microbiology, 2008-08, Vol.74 (15), p.4910-4922</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright American Society for Microbiology Aug 2008</rights><rights>Copyright © 2008, American Society for Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c587t-876f97790c4fe0213fc56c1ece3238448e2474b08f8deb6c89198c6c36209d8e3</citedby><cites>FETCH-LOGICAL-c587t-876f97790c4fe0213fc56c1ece3238448e2474b08f8deb6c89198c6c36209d8e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2519350/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2519350/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,3175,3176,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20558785$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18539788$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hall, Justine R</creatorcontrib><creatorcontrib>Mitchell, Kendra R</creatorcontrib><creatorcontrib>Jackson-Weaver, Olan</creatorcontrib><creatorcontrib>Kooser, Ara S</creatorcontrib><creatorcontrib>Cron, Brandi R</creatorcontrib><creatorcontrib>Crossey, Laura J</creatorcontrib><creatorcontrib>Takacs-Vesbach, Cristina D</creatorcontrib><title>Molecular Characterization of the Diversity and Distribution of a Thermal Spring Microbial Community by Using rRNA and Metabolic Genes</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>The diversity and distribution of a bacterial community from Coffee Pots Hot Spring, a thermal spring in Yellowstone National Park with a temperature range of 39.3 to 74.1°C and pH range of 5.75 to 6.91, were investigated by sequencing cloned PCR products and quantitative PCR (qPCR) of 16S rRNA and metabolic genes. The spring was inhabited by three Aquificae genera--Thermocrinis, Hydrogenobaculum, and SULFURIHYDROGENIBIUM:and members of the Alpha-, Beta-, and Gammaproteobacteria, Firmicutes, Acidobacteria, Deinococcus-Thermus, and candidate division OP5. The in situ chemical affinities were calculated for 41 potential metabolic reactions using measured environmental parameters and a range of hydrogen and oxygen concentrations. Reactions that use oxygen, ferric iron, sulfur, and nitrate as electron acceptors were predicted to be the most energetically favorable, while reactions using sulfate were expected to be less favorable. Samples were screened for genes used in ammonia oxidation (amoA, bacterial gene only), the reductive tricarboxylic acid (rTCA) cycle (aclB), the Calvin cycle (cbbM), sulfate reduction (dsrAB), nitrogen fixation (nifH), nitrite reduction (nirK), and sulfide oxidation (soxEF1) by PCR. Genes for carbon fixation by the rTCA cycle and nitrogen fixation were detected. All aclB sequences were phylogenetically related and spatially correlated to Sulfurihydrogenibium 16S rRNA gene sequences using qPCR (R² = 0.99). This result supports the recent finding of citrate cleavage by enzymes other than ATP citrate lyase in the rTCA cycle of the Aquificaceae family. We briefly consider potential biochemical mechanisms that may allow Sulfurihydrogenibium and Thermocrinis to codominate some hydrothermal environments.</description><subject>Aquificae</subject><subject>ATP</subject><subject>Bacteria</subject><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>Bacteria - isolation & purification</subject><subject>Biodiversity</subject><subject>Biological and medical sciences</subject><subject>Cloning</subject><subject>Correlation analysis</subject><subject>DNA Primers</subject><subject>Environment</subject><subject>Enzymes</subject><subject>Fresh Water - chemistry</subject><subject>Fresh Water - microbiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genes</subject><subject>Genetic Variation</subject><subject>Hot Springs - chemistry</subject><subject>Hot Springs - microbiology</subject><subject>Hydrogen - analysis</subject><subject>Microbial Ecology</subject><subject>Microbiology</subject><subject>Molecular Sequence Data</subject><subject>New Mexico</subject><subject>Oxygen - analysis</subject><subject>Phylogeny</subject><subject>Polymerase Chain Reaction - methods</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Ribosomal - genetics</subject><subject>Temperature</subject><issn>0099-2240</issn><issn>1098-5336</issn><issn>1098-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkktv1DAUhS0EoqWwYw0REqxIuX4ksTdIo6EUpA5ItLO2HM_NxFUSt3ZSNPwAfjeezjA8VpZ9Px-fe48JeU7hlFIm383OFqcAjPMc5ANyTEHJvOC8fEiOAZTKGRNwRJ7EeA0AAkr5mBxRWXBVSXlMfi58h3bqTMjmrQnGjhjcDzM6P2S-ycYWsw_uDkN04yYzwyrt4hhcPf0mTHbVYuhNl13eBDess4WzwdcuHcx930_D9mK9yZZxWwzfvszuZRY4mtp3zmbnOGB8Sh41pov4bL-ekOXHs6v5p_zi6_nn-ewit4WsxlxWZaOqSoEVDQKjvLFFaSla5IxLISQyUYkaZCNXWJdWKqqkLS0vGaiVRH5C3u90b6a6x5XFYQym08l5b8JGe-P0v5XBtXrt7zQrqOIFJIE3e4HgbyeMo-5dtNh1ZkA_Rc1oAUwwlsBX_4HXfgpDak4zKFITrFIJeruD0shiDNgcnFDQ23R1Slffp6tBJvzF3-7_wPs4E_B6D5hoTdcEM1gXD1x6OI0xwQdzrVu3311AbWKvDfa6EpoWWii6bfXlDmqM12YdktDykgHl6Vux9JdK_gu798Jj</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Hall, Justine R</creator><creator>Mitchell, Kendra R</creator><creator>Jackson-Weaver, Olan</creator><creator>Kooser, Ara S</creator><creator>Cron, Brandi R</creator><creator>Crossey, Laura J</creator><creator>Takacs-Vesbach, Cristina D</creator><general>American Society for Microbiology</general><general>American Society for Microbiology (ASM)</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope></search><sort><creationdate>20080801</creationdate><title>Molecular Characterization of the Diversity and Distribution of a Thermal Spring Microbial Community by Using rRNA and Metabolic Genes</title><author>Hall, Justine R ; Mitchell, Kendra R ; Jackson-Weaver, Olan ; Kooser, Ara S ; Cron, Brandi R ; Crossey, Laura J ; Takacs-Vesbach, Cristina D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c587t-876f97790c4fe0213fc56c1ece3238448e2474b08f8deb6c89198c6c36209d8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Aquificae</topic><topic>ATP</topic><topic>Bacteria</topic><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>Bacteria - isolation & purification</topic><topic>Biodiversity</topic><topic>Biological and medical sciences</topic><topic>Cloning</topic><topic>Correlation analysis</topic><topic>DNA Primers</topic><topic>Environment</topic><topic>Enzymes</topic><topic>Fresh Water - chemistry</topic><topic>Fresh Water - microbiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genes</topic><topic>Genetic Variation</topic><topic>Hot Springs - chemistry</topic><topic>Hot Springs - microbiology</topic><topic>Hydrogen - analysis</topic><topic>Microbial Ecology</topic><topic>Microbiology</topic><topic>Molecular Sequence Data</topic><topic>New Mexico</topic><topic>Oxygen - analysis</topic><topic>Phylogeny</topic><topic>Polymerase Chain Reaction - methods</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Ribosomal - genetics</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hall, Justine R</creatorcontrib><creatorcontrib>Mitchell, Kendra R</creatorcontrib><creatorcontrib>Jackson-Weaver, Olan</creatorcontrib><creatorcontrib>Kooser, Ara S</creatorcontrib><creatorcontrib>Cron, Brandi R</creatorcontrib><creatorcontrib>Crossey, Laura J</creatorcontrib><creatorcontrib>Takacs-Vesbach, Cristina D</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hall, Justine R</au><au>Mitchell, Kendra R</au><au>Jackson-Weaver, Olan</au><au>Kooser, Ara S</au><au>Cron, Brandi R</au><au>Crossey, Laura J</au><au>Takacs-Vesbach, Cristina D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Characterization of the Diversity and Distribution of a Thermal Spring Microbial Community by Using rRNA and Metabolic Genes</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>2008-08-01</date><risdate>2008</risdate><volume>74</volume><issue>15</issue><spage>4910</spage><epage>4922</epage><pages>4910-4922</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><eissn>1098-6596</eissn><coden>AEMIDF</coden><abstract>The diversity and distribution of a bacterial community from Coffee Pots Hot Spring, a thermal spring in Yellowstone National Park with a temperature range of 39.3 to 74.1°C and pH range of 5.75 to 6.91, were investigated by sequencing cloned PCR products and quantitative PCR (qPCR) of 16S rRNA and metabolic genes. The spring was inhabited by three Aquificae genera--Thermocrinis, Hydrogenobaculum, and SULFURIHYDROGENIBIUM:and members of the Alpha-, Beta-, and Gammaproteobacteria, Firmicutes, Acidobacteria, Deinococcus-Thermus, and candidate division OP5. The in situ chemical affinities were calculated for 41 potential metabolic reactions using measured environmental parameters and a range of hydrogen and oxygen concentrations. Reactions that use oxygen, ferric iron, sulfur, and nitrate as electron acceptors were predicted to be the most energetically favorable, while reactions using sulfate were expected to be less favorable. Samples were screened for genes used in ammonia oxidation (amoA, bacterial gene only), the reductive tricarboxylic acid (rTCA) cycle (aclB), the Calvin cycle (cbbM), sulfate reduction (dsrAB), nitrogen fixation (nifH), nitrite reduction (nirK), and sulfide oxidation (soxEF1) by PCR. Genes for carbon fixation by the rTCA cycle and nitrogen fixation were detected. All aclB sequences were phylogenetically related and spatially correlated to Sulfurihydrogenibium 16S rRNA gene sequences using qPCR (R² = 0.99). This result supports the recent finding of citrate cleavage by enzymes other than ATP citrate lyase in the rTCA cycle of the Aquificaceae family. We briefly consider potential biochemical mechanisms that may allow Sulfurihydrogenibium and Thermocrinis to codominate some hydrothermal environments.</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>18539788</pmid><doi>10.1128/AEM.00233-08</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0099-2240 |
ispartof | Applied and Environmental Microbiology, 2008-08, Vol.74 (15), p.4910-4922 |
issn | 0099-2240 1098-5336 1098-6596 |
language | eng |
recordid | cdi_proquest_journals_205977279 |
source | American Society for Microbiology; MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Aquificae ATP Bacteria Bacteria - classification Bacteria - genetics Bacteria - isolation & purification Biodiversity Biological and medical sciences Cloning Correlation analysis DNA Primers Environment Enzymes Fresh Water - chemistry Fresh Water - microbiology Fundamental and applied biological sciences. Psychology Genes Genetic Variation Hot Springs - chemistry Hot Springs - microbiology Hydrogen - analysis Microbial Ecology Microbiology Molecular Sequence Data New Mexico Oxygen - analysis Phylogeny Polymerase Chain Reaction - methods Ribonucleic acid RNA RNA, Ribosomal - genetics Temperature |
title | Molecular Characterization of the Diversity and Distribution of a Thermal Spring Microbial Community by Using rRNA and Metabolic Genes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A58%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Characterization%20of%20the%20Diversity%20and%20Distribution%20of%20a%20Thermal%20Spring%20Microbial%20Community%20by%20Using%20rRNA%20and%20Metabolic%20Genes&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=Hall,%20Justine%20R&rft.date=2008-08-01&rft.volume=74&rft.issue=15&rft.spage=4910&rft.epage=4922&rft.pages=4910-4922&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/AEM.00233-08&rft_dat=%3Cproquest_pubme%3E21502422%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205977279&rft_id=info:pmid/18539788&rfr_iscdi=true |