In Vivo Bioluminescence Imaging for the Study of Intestinal Colonization by Escherichia coli in Mice
Bioluminescence imaging (BLI) is emerging as a powerful tool for real-time monitoring of infections in living animals. However, since luciferases are oxygenases, it has been suggested that the requirement for oxygen may limit the use of BLI in anaerobic environments, such as the lumen of the gut. St...
Gespeichert in:
Veröffentlicht in: | Applied and Environmental Microbiology 2010-01, Vol.76 (1), p.264-274 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 274 |
---|---|
container_issue | 1 |
container_start_page | 264 |
container_title | Applied and Environmental Microbiology |
container_volume | 76 |
creator | Foucault, M.-L Thomas, L Goussard, S Branchini, B.R Grillot-Courvalin, C |
description | Bioluminescence imaging (BLI) is emerging as a powerful tool for real-time monitoring of infections in living animals. However, since luciferases are oxygenases, it has been suggested that the requirement for oxygen may limit the use of BLI in anaerobic environments, such as the lumen of the gut. Strains of Escherichia coli harboring the genes for either the bacterial luciferase from Photorhabdus luminescens or the PpyRE-TS and PpyGR-TS firefly luciferase mutants of Photinus pyralis (red and green thermostable P. pyralis luciferase mutants, respectively) have been engineered and used to monitor intestinal colonization in the streptomycin-treated mouse model. There was excellent correlation between the bioluminescence signal measured in the feces (R² = 0.98) or transcutaneously in the abdominal region of whole animals (R² = 0.99) and the CFU counts in the feces of bacteria harboring the luxABCDE operon. Stability in vivo of the bioluminescence signal was achieved by constructing plasmid pAT881(pGB2ΩPamiluxABCDE), which allowed long-term monitoring of intestinal colonization without the need for antibiotic selection for plasmid maintenance. Levels of intestinal colonization by various strains of E. coli could be compared directly by simple recording of the bioluminescence signal in living animals. The difference in spectra of light emission of the PpyRE-TS and PpyGR-TS firefly luciferase mutants and dual bioluminescence detection allowed direct in vitro and in vivo quantification of two bacterial populations by measurement of red and green emitted signals and thus monitoring of the two populations simultaneously. This system offers a simple and direct method to study in vitro and in vivo competition between mutants and the parental strain. BLI is a useful tool to study intestinal colonization. |
doi_str_mv | 10.1128/AEM.01686-09 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_journals_205970339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1933883281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-6050c7b960b0a443d08fbc6027028fdc67fa36794b04a07594ea6babd626d11d3</originalsourceid><addsrcrecordid>eNp90Utv1DAUBeAIgei0sGMNFhKwIeXaTvzYIJXRACO1YlHK1nIcZ-IqsYudtBp-PR5mVB4LpEhe5NOx7z1F8QzDKcZEvDtbXZwCZoKVIB8UCwxSlDWl7GGxAJCyJKSCo-I4pWsAqICJx8URlkIAq-miaNcefXO3AX1wYZhH520y1huL1qPeOL9BXYho6i26nOZ2i0KH1n6yaXJeD2gZhuDdDz254FGzRatkehud6Z1GJgwOOY8unLFPikedHpJ9ejhPiquPq6_Lz-X5l0_r5dl5aSrOp5JBDYY3kkEDuqpoC6JrDAPCgYiuNYx3mjIuqwYqDbyWldWs0U3LCGsxbulJ8X6fezM3o23zIFPUg7qJbtRxq4J26u8_3vVqE24V4VKwmuWAN4eAGL7PeUw1uryPYdDehjkpnveaPymzfP1fSTAFCoJk-PIfeB3mmLeXDdSSA6W7tLd7ZGJIKdru_s0Y1K5llVtWv1pWsOPP_5zzNz7UmsGrA9DJ6KGL2huX7h0hNTBCIDu0d73b9HcuWqXTqLQdFWcKK8KqTF7sSaeD0puYY64uCeTxMMc830V_AupMwwc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205970339</pqid></control><display><type>article</type><title>In Vivo Bioluminescence Imaging for the Study of Intestinal Colonization by Escherichia coli in Mice</title><source>American Society for Microbiology</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Foucault, M.-L ; Thomas, L ; Goussard, S ; Branchini, B.R ; Grillot-Courvalin, C</creator><creatorcontrib>Foucault, M.-L ; Thomas, L ; Goussard, S ; Branchini, B.R ; Grillot-Courvalin, C</creatorcontrib><description>Bioluminescence imaging (BLI) is emerging as a powerful tool for real-time monitoring of infections in living animals. However, since luciferases are oxygenases, it has been suggested that the requirement for oxygen may limit the use of BLI in anaerobic environments, such as the lumen of the gut. Strains of Escherichia coli harboring the genes for either the bacterial luciferase from Photorhabdus luminescens or the PpyRE-TS and PpyGR-TS firefly luciferase mutants of Photinus pyralis (red and green thermostable P. pyralis luciferase mutants, respectively) have been engineered and used to monitor intestinal colonization in the streptomycin-treated mouse model. There was excellent correlation between the bioluminescence signal measured in the feces (R² = 0.98) or transcutaneously in the abdominal region of whole animals (R² = 0.99) and the CFU counts in the feces of bacteria harboring the luxABCDE operon. Stability in vivo of the bioluminescence signal was achieved by constructing plasmid pAT881(pGB2ΩPamiluxABCDE), which allowed long-term monitoring of intestinal colonization without the need for antibiotic selection for plasmid maintenance. Levels of intestinal colonization by various strains of E. coli could be compared directly by simple recording of the bioluminescence signal in living animals. The difference in spectra of light emission of the PpyRE-TS and PpyGR-TS firefly luciferase mutants and dual bioluminescence detection allowed direct in vitro and in vivo quantification of two bacterial populations by measurement of red and green emitted signals and thus monitoring of the two populations simultaneously. This system offers a simple and direct method to study in vitro and in vivo competition between mutants and the parental strain. BLI is a useful tool to study intestinal colonization.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>EISSN: 1098-6596</identifier><identifier>DOI: 10.1128/AEM.01686-09</identifier><identifier>PMID: 19880653</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>Anaerobic environments ; Animals ; Biological and medical sciences ; Bioluminescence ; Cells ; Colony Count, Microbial ; E coli ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - growth & development ; Escherichia coli Infections - microbiology ; Fundamental and applied biological sciences. Psychology ; Gastrointestinal Tract - microbiology ; Genetic engineering ; Luciferases - genetics ; Luciferases - metabolism ; Luciferases, Bacterial - genetics ; Luciferases, Bacterial - metabolism ; Luminescence ; Methods ; Mice ; Mice, Inbred BALB C ; Microbiology ; Mutation ; Plasmids ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Rodents ; Staining and Labeling - methods ; Whole Body Imaging - methods</subject><ispartof>Applied and Environmental Microbiology, 2010-01, Vol.76 (1), p.264-274</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright American Society for Microbiology Jan 2010</rights><rights>Copyright © 2010, American Society for Microbiology 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c477t-6050c7b960b0a443d08fbc6027028fdc67fa36794b04a07594ea6babd626d11d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798656/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798656/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,3175,3176,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22506220$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19880653$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Foucault, M.-L</creatorcontrib><creatorcontrib>Thomas, L</creatorcontrib><creatorcontrib>Goussard, S</creatorcontrib><creatorcontrib>Branchini, B.R</creatorcontrib><creatorcontrib>Grillot-Courvalin, C</creatorcontrib><title>In Vivo Bioluminescence Imaging for the Study of Intestinal Colonization by Escherichia coli in Mice</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>Bioluminescence imaging (BLI) is emerging as a powerful tool for real-time monitoring of infections in living animals. However, since luciferases are oxygenases, it has been suggested that the requirement for oxygen may limit the use of BLI in anaerobic environments, such as the lumen of the gut. Strains of Escherichia coli harboring the genes for either the bacterial luciferase from Photorhabdus luminescens or the PpyRE-TS and PpyGR-TS firefly luciferase mutants of Photinus pyralis (red and green thermostable P. pyralis luciferase mutants, respectively) have been engineered and used to monitor intestinal colonization in the streptomycin-treated mouse model. There was excellent correlation between the bioluminescence signal measured in the feces (R² = 0.98) or transcutaneously in the abdominal region of whole animals (R² = 0.99) and the CFU counts in the feces of bacteria harboring the luxABCDE operon. Stability in vivo of the bioluminescence signal was achieved by constructing plasmid pAT881(pGB2ΩPamiluxABCDE), which allowed long-term monitoring of intestinal colonization without the need for antibiotic selection for plasmid maintenance. Levels of intestinal colonization by various strains of E. coli could be compared directly by simple recording of the bioluminescence signal in living animals. The difference in spectra of light emission of the PpyRE-TS and PpyGR-TS firefly luciferase mutants and dual bioluminescence detection allowed direct in vitro and in vivo quantification of two bacterial populations by measurement of red and green emitted signals and thus monitoring of the two populations simultaneously. This system offers a simple and direct method to study in vitro and in vivo competition between mutants and the parental strain. BLI is a useful tool to study intestinal colonization.</description><subject>Anaerobic environments</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Bioluminescence</subject><subject>Cells</subject><subject>Colony Count, Microbial</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - growth & development</subject><subject>Escherichia coli Infections - microbiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gastrointestinal Tract - microbiology</subject><subject>Genetic engineering</subject><subject>Luciferases - genetics</subject><subject>Luciferases - metabolism</subject><subject>Luciferases, Bacterial - genetics</subject><subject>Luciferases, Bacterial - metabolism</subject><subject>Luminescence</subject><subject>Methods</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Microbiology</subject><subject>Mutation</subject><subject>Plasmids</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Rodents</subject><subject>Staining and Labeling - methods</subject><subject>Whole Body Imaging - methods</subject><issn>0099-2240</issn><issn>1098-5336</issn><issn>1098-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90Utv1DAUBeAIgei0sGMNFhKwIeXaTvzYIJXRACO1YlHK1nIcZ-IqsYudtBp-PR5mVB4LpEhe5NOx7z1F8QzDKcZEvDtbXZwCZoKVIB8UCwxSlDWl7GGxAJCyJKSCo-I4pWsAqICJx8URlkIAq-miaNcefXO3AX1wYZhH520y1huL1qPeOL9BXYho6i26nOZ2i0KH1n6yaXJeD2gZhuDdDz254FGzRatkehud6Z1GJgwOOY8unLFPikedHpJ9ejhPiquPq6_Lz-X5l0_r5dl5aSrOp5JBDYY3kkEDuqpoC6JrDAPCgYiuNYx3mjIuqwYqDbyWldWs0U3LCGsxbulJ8X6fezM3o23zIFPUg7qJbtRxq4J26u8_3vVqE24V4VKwmuWAN4eAGL7PeUw1uryPYdDehjkpnveaPymzfP1fSTAFCoJk-PIfeB3mmLeXDdSSA6W7tLd7ZGJIKdru_s0Y1K5llVtWv1pWsOPP_5zzNz7UmsGrA9DJ6KGL2huX7h0hNTBCIDu0d73b9HcuWqXTqLQdFWcKK8KqTF7sSaeD0puYY64uCeTxMMc830V_AupMwwc</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Foucault, M.-L</creator><creator>Thomas, L</creator><creator>Goussard, S</creator><creator>Branchini, B.R</creator><creator>Grillot-Courvalin, C</creator><general>American Society for Microbiology</general><general>American Society for Microbiology (ASM)</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100101</creationdate><title>In Vivo Bioluminescence Imaging for the Study of Intestinal Colonization by Escherichia coli in Mice</title><author>Foucault, M.-L ; Thomas, L ; Goussard, S ; Branchini, B.R ; Grillot-Courvalin, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-6050c7b960b0a443d08fbc6027028fdc67fa36794b04a07594ea6babd626d11d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Anaerobic environments</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Bioluminescence</topic><topic>Cells</topic><topic>Colony Count, Microbial</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - growth & development</topic><topic>Escherichia coli Infections - microbiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gastrointestinal Tract - microbiology</topic><topic>Genetic engineering</topic><topic>Luciferases - genetics</topic><topic>Luciferases - metabolism</topic><topic>Luciferases, Bacterial - genetics</topic><topic>Luciferases, Bacterial - metabolism</topic><topic>Luminescence</topic><topic>Methods</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Microbiology</topic><topic>Mutation</topic><topic>Plasmids</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Rodents</topic><topic>Staining and Labeling - methods</topic><topic>Whole Body Imaging - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Foucault, M.-L</creatorcontrib><creatorcontrib>Thomas, L</creatorcontrib><creatorcontrib>Goussard, S</creatorcontrib><creatorcontrib>Branchini, B.R</creatorcontrib><creatorcontrib>Grillot-Courvalin, C</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Foucault, M.-L</au><au>Thomas, L</au><au>Goussard, S</au><au>Branchini, B.R</au><au>Grillot-Courvalin, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Vivo Bioluminescence Imaging for the Study of Intestinal Colonization by Escherichia coli in Mice</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>2010-01-01</date><risdate>2010</risdate><volume>76</volume><issue>1</issue><spage>264</spage><epage>274</epage><pages>264-274</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><eissn>1098-6596</eissn><coden>AEMIDF</coden><abstract>Bioluminescence imaging (BLI) is emerging as a powerful tool for real-time monitoring of infections in living animals. However, since luciferases are oxygenases, it has been suggested that the requirement for oxygen may limit the use of BLI in anaerobic environments, such as the lumen of the gut. Strains of Escherichia coli harboring the genes for either the bacterial luciferase from Photorhabdus luminescens or the PpyRE-TS and PpyGR-TS firefly luciferase mutants of Photinus pyralis (red and green thermostable P. pyralis luciferase mutants, respectively) have been engineered and used to monitor intestinal colonization in the streptomycin-treated mouse model. There was excellent correlation between the bioluminescence signal measured in the feces (R² = 0.98) or transcutaneously in the abdominal region of whole animals (R² = 0.99) and the CFU counts in the feces of bacteria harboring the luxABCDE operon. Stability in vivo of the bioluminescence signal was achieved by constructing plasmid pAT881(pGB2ΩPamiluxABCDE), which allowed long-term monitoring of intestinal colonization without the need for antibiotic selection for plasmid maintenance. Levels of intestinal colonization by various strains of E. coli could be compared directly by simple recording of the bioluminescence signal in living animals. The difference in spectra of light emission of the PpyRE-TS and PpyGR-TS firefly luciferase mutants and dual bioluminescence detection allowed direct in vitro and in vivo quantification of two bacterial populations by measurement of red and green emitted signals and thus monitoring of the two populations simultaneously. This system offers a simple and direct method to study in vitro and in vivo competition between mutants and the parental strain. BLI is a useful tool to study intestinal colonization.</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>19880653</pmid><doi>10.1128/AEM.01686-09</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0099-2240 |
ispartof | Applied and Environmental Microbiology, 2010-01, Vol.76 (1), p.264-274 |
issn | 0099-2240 1098-5336 1098-6596 |
language | eng |
recordid | cdi_proquest_journals_205970339 |
source | American Society for Microbiology; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Anaerobic environments Animals Biological and medical sciences Bioluminescence Cells Colony Count, Microbial E coli Escherichia coli Escherichia coli - genetics Escherichia coli - growth & development Escherichia coli Infections - microbiology Fundamental and applied biological sciences. Psychology Gastrointestinal Tract - microbiology Genetic engineering Luciferases - genetics Luciferases - metabolism Luciferases, Bacterial - genetics Luciferases, Bacterial - metabolism Luminescence Methods Mice Mice, Inbred BALB C Microbiology Mutation Plasmids Recombinant Proteins - genetics Recombinant Proteins - metabolism Rodents Staining and Labeling - methods Whole Body Imaging - methods |
title | In Vivo Bioluminescence Imaging for the Study of Intestinal Colonization by Escherichia coli in Mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T14%3A51%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Vivo%20Bioluminescence%20Imaging%20for%20the%20Study%20of%20Intestinal%20Colonization%20by%20Escherichia%20coli%20in%20Mice&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=Foucault,%20M.-L&rft.date=2010-01-01&rft.volume=76&rft.issue=1&rft.spage=264&rft.epage=274&rft.pages=264-274&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/AEM.01686-09&rft_dat=%3Cproquest_pasca%3E1933883281%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205970339&rft_id=info:pmid/19880653&rfr_iscdi=true |