In Vivo Bioluminescence Imaging for the Study of Intestinal Colonization by Escherichia coli in Mice

Bioluminescence imaging (BLI) is emerging as a powerful tool for real-time monitoring of infections in living animals. However, since luciferases are oxygenases, it has been suggested that the requirement for oxygen may limit the use of BLI in anaerobic environments, such as the lumen of the gut. St...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and Environmental Microbiology 2010-01, Vol.76 (1), p.264-274
Hauptverfasser: Foucault, M.-L, Thomas, L, Goussard, S, Branchini, B.R, Grillot-Courvalin, C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 274
container_issue 1
container_start_page 264
container_title Applied and Environmental Microbiology
container_volume 76
creator Foucault, M.-L
Thomas, L
Goussard, S
Branchini, B.R
Grillot-Courvalin, C
description Bioluminescence imaging (BLI) is emerging as a powerful tool for real-time monitoring of infections in living animals. However, since luciferases are oxygenases, it has been suggested that the requirement for oxygen may limit the use of BLI in anaerobic environments, such as the lumen of the gut. Strains of Escherichia coli harboring the genes for either the bacterial luciferase from Photorhabdus luminescens or the PpyRE-TS and PpyGR-TS firefly luciferase mutants of Photinus pyralis (red and green thermostable P. pyralis luciferase mutants, respectively) have been engineered and used to monitor intestinal colonization in the streptomycin-treated mouse model. There was excellent correlation between the bioluminescence signal measured in the feces (R² = 0.98) or transcutaneously in the abdominal region of whole animals (R² = 0.99) and the CFU counts in the feces of bacteria harboring the luxABCDE operon. Stability in vivo of the bioluminescence signal was achieved by constructing plasmid pAT881(pGB2ΩPamiluxABCDE), which allowed long-term monitoring of intestinal colonization without the need for antibiotic selection for plasmid maintenance. Levels of intestinal colonization by various strains of E. coli could be compared directly by simple recording of the bioluminescence signal in living animals. The difference in spectra of light emission of the PpyRE-TS and PpyGR-TS firefly luciferase mutants and dual bioluminescence detection allowed direct in vitro and in vivo quantification of two bacterial populations by measurement of red and green emitted signals and thus monitoring of the two populations simultaneously. This system offers a simple and direct method to study in vitro and in vivo competition between mutants and the parental strain. BLI is a useful tool to study intestinal colonization.
doi_str_mv 10.1128/AEM.01686-09
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_journals_205970339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1933883281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-6050c7b960b0a443d08fbc6027028fdc67fa36794b04a07594ea6babd626d11d3</originalsourceid><addsrcrecordid>eNp90Utv1DAUBeAIgei0sGMNFhKwIeXaTvzYIJXRACO1YlHK1nIcZ-IqsYudtBp-PR5mVB4LpEhe5NOx7z1F8QzDKcZEvDtbXZwCZoKVIB8UCwxSlDWl7GGxAJCyJKSCo-I4pWsAqICJx8URlkIAq-miaNcefXO3AX1wYZhH520y1huL1qPeOL9BXYho6i26nOZ2i0KH1n6yaXJeD2gZhuDdDz254FGzRatkehud6Z1GJgwOOY8unLFPikedHpJ9ejhPiquPq6_Lz-X5l0_r5dl5aSrOp5JBDYY3kkEDuqpoC6JrDAPCgYiuNYx3mjIuqwYqDbyWldWs0U3LCGsxbulJ8X6fezM3o23zIFPUg7qJbtRxq4J26u8_3vVqE24V4VKwmuWAN4eAGL7PeUw1uryPYdDehjkpnveaPymzfP1fSTAFCoJk-PIfeB3mmLeXDdSSA6W7tLd7ZGJIKdru_s0Y1K5llVtWv1pWsOPP_5zzNz7UmsGrA9DJ6KGL2huX7h0hNTBCIDu0d73b9HcuWqXTqLQdFWcKK8KqTF7sSaeD0puYY64uCeTxMMc830V_AupMwwc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205970339</pqid></control><display><type>article</type><title>In Vivo Bioluminescence Imaging for the Study of Intestinal Colonization by Escherichia coli in Mice</title><source>American Society for Microbiology</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Foucault, M.-L ; Thomas, L ; Goussard, S ; Branchini, B.R ; Grillot-Courvalin, C</creator><creatorcontrib>Foucault, M.-L ; Thomas, L ; Goussard, S ; Branchini, B.R ; Grillot-Courvalin, C</creatorcontrib><description>Bioluminescence imaging (BLI) is emerging as a powerful tool for real-time monitoring of infections in living animals. However, since luciferases are oxygenases, it has been suggested that the requirement for oxygen may limit the use of BLI in anaerobic environments, such as the lumen of the gut. Strains of Escherichia coli harboring the genes for either the bacterial luciferase from Photorhabdus luminescens or the PpyRE-TS and PpyGR-TS firefly luciferase mutants of Photinus pyralis (red and green thermostable P. pyralis luciferase mutants, respectively) have been engineered and used to monitor intestinal colonization in the streptomycin-treated mouse model. There was excellent correlation between the bioluminescence signal measured in the feces (R² = 0.98) or transcutaneously in the abdominal region of whole animals (R² = 0.99) and the CFU counts in the feces of bacteria harboring the luxABCDE operon. Stability in vivo of the bioluminescence signal was achieved by constructing plasmid pAT881(pGB2ΩPamiluxABCDE), which allowed long-term monitoring of intestinal colonization without the need for antibiotic selection for plasmid maintenance. Levels of intestinal colonization by various strains of E. coli could be compared directly by simple recording of the bioluminescence signal in living animals. The difference in spectra of light emission of the PpyRE-TS and PpyGR-TS firefly luciferase mutants and dual bioluminescence detection allowed direct in vitro and in vivo quantification of two bacterial populations by measurement of red and green emitted signals and thus monitoring of the two populations simultaneously. This system offers a simple and direct method to study in vitro and in vivo competition between mutants and the parental strain. BLI is a useful tool to study intestinal colonization.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>EISSN: 1098-6596</identifier><identifier>DOI: 10.1128/AEM.01686-09</identifier><identifier>PMID: 19880653</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>Anaerobic environments ; Animals ; Biological and medical sciences ; Bioluminescence ; Cells ; Colony Count, Microbial ; E coli ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - growth &amp; development ; Escherichia coli Infections - microbiology ; Fundamental and applied biological sciences. Psychology ; Gastrointestinal Tract - microbiology ; Genetic engineering ; Luciferases - genetics ; Luciferases - metabolism ; Luciferases, Bacterial - genetics ; Luciferases, Bacterial - metabolism ; Luminescence ; Methods ; Mice ; Mice, Inbred BALB C ; Microbiology ; Mutation ; Plasmids ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Rodents ; Staining and Labeling - methods ; Whole Body Imaging - methods</subject><ispartof>Applied and Environmental Microbiology, 2010-01, Vol.76 (1), p.264-274</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright American Society for Microbiology Jan 2010</rights><rights>Copyright © 2010, American Society for Microbiology 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c477t-6050c7b960b0a443d08fbc6027028fdc67fa36794b04a07594ea6babd626d11d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798656/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798656/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,3175,3176,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22506220$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19880653$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Foucault, M.-L</creatorcontrib><creatorcontrib>Thomas, L</creatorcontrib><creatorcontrib>Goussard, S</creatorcontrib><creatorcontrib>Branchini, B.R</creatorcontrib><creatorcontrib>Grillot-Courvalin, C</creatorcontrib><title>In Vivo Bioluminescence Imaging for the Study of Intestinal Colonization by Escherichia coli in Mice</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>Bioluminescence imaging (BLI) is emerging as a powerful tool for real-time monitoring of infections in living animals. However, since luciferases are oxygenases, it has been suggested that the requirement for oxygen may limit the use of BLI in anaerobic environments, such as the lumen of the gut. Strains of Escherichia coli harboring the genes for either the bacterial luciferase from Photorhabdus luminescens or the PpyRE-TS and PpyGR-TS firefly luciferase mutants of Photinus pyralis (red and green thermostable P. pyralis luciferase mutants, respectively) have been engineered and used to monitor intestinal colonization in the streptomycin-treated mouse model. There was excellent correlation between the bioluminescence signal measured in the feces (R² = 0.98) or transcutaneously in the abdominal region of whole animals (R² = 0.99) and the CFU counts in the feces of bacteria harboring the luxABCDE operon. Stability in vivo of the bioluminescence signal was achieved by constructing plasmid pAT881(pGB2ΩPamiluxABCDE), which allowed long-term monitoring of intestinal colonization without the need for antibiotic selection for plasmid maintenance. Levels of intestinal colonization by various strains of E. coli could be compared directly by simple recording of the bioluminescence signal in living animals. The difference in spectra of light emission of the PpyRE-TS and PpyGR-TS firefly luciferase mutants and dual bioluminescence detection allowed direct in vitro and in vivo quantification of two bacterial populations by measurement of red and green emitted signals and thus monitoring of the two populations simultaneously. This system offers a simple and direct method to study in vitro and in vivo competition between mutants and the parental strain. BLI is a useful tool to study intestinal colonization.</description><subject>Anaerobic environments</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Bioluminescence</subject><subject>Cells</subject><subject>Colony Count, Microbial</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - growth &amp; development</subject><subject>Escherichia coli Infections - microbiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gastrointestinal Tract - microbiology</subject><subject>Genetic engineering</subject><subject>Luciferases - genetics</subject><subject>Luciferases - metabolism</subject><subject>Luciferases, Bacterial - genetics</subject><subject>Luciferases, Bacterial - metabolism</subject><subject>Luminescence</subject><subject>Methods</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Microbiology</subject><subject>Mutation</subject><subject>Plasmids</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Rodents</subject><subject>Staining and Labeling - methods</subject><subject>Whole Body Imaging - methods</subject><issn>0099-2240</issn><issn>1098-5336</issn><issn>1098-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90Utv1DAUBeAIgei0sGMNFhKwIeXaTvzYIJXRACO1YlHK1nIcZ-IqsYudtBp-PR5mVB4LpEhe5NOx7z1F8QzDKcZEvDtbXZwCZoKVIB8UCwxSlDWl7GGxAJCyJKSCo-I4pWsAqICJx8URlkIAq-miaNcefXO3AX1wYZhH520y1huL1qPeOL9BXYho6i26nOZ2i0KH1n6yaXJeD2gZhuDdDz254FGzRatkehud6Z1GJgwOOY8unLFPikedHpJ9ejhPiquPq6_Lz-X5l0_r5dl5aSrOp5JBDYY3kkEDuqpoC6JrDAPCgYiuNYx3mjIuqwYqDbyWldWs0U3LCGsxbulJ8X6fezM3o23zIFPUg7qJbtRxq4J26u8_3vVqE24V4VKwmuWAN4eAGL7PeUw1uryPYdDehjkpnveaPymzfP1fSTAFCoJk-PIfeB3mmLeXDdSSA6W7tLd7ZGJIKdru_s0Y1K5llVtWv1pWsOPP_5zzNz7UmsGrA9DJ6KGL2huX7h0hNTBCIDu0d73b9HcuWqXTqLQdFWcKK8KqTF7sSaeD0puYY64uCeTxMMc830V_AupMwwc</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Foucault, M.-L</creator><creator>Thomas, L</creator><creator>Goussard, S</creator><creator>Branchini, B.R</creator><creator>Grillot-Courvalin, C</creator><general>American Society for Microbiology</general><general>American Society for Microbiology (ASM)</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100101</creationdate><title>In Vivo Bioluminescence Imaging for the Study of Intestinal Colonization by Escherichia coli in Mice</title><author>Foucault, M.-L ; Thomas, L ; Goussard, S ; Branchini, B.R ; Grillot-Courvalin, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-6050c7b960b0a443d08fbc6027028fdc67fa36794b04a07594ea6babd626d11d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Anaerobic environments</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Bioluminescence</topic><topic>Cells</topic><topic>Colony Count, Microbial</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - growth &amp; development</topic><topic>Escherichia coli Infections - microbiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gastrointestinal Tract - microbiology</topic><topic>Genetic engineering</topic><topic>Luciferases - genetics</topic><topic>Luciferases - metabolism</topic><topic>Luciferases, Bacterial - genetics</topic><topic>Luciferases, Bacterial - metabolism</topic><topic>Luminescence</topic><topic>Methods</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Microbiology</topic><topic>Mutation</topic><topic>Plasmids</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Rodents</topic><topic>Staining and Labeling - methods</topic><topic>Whole Body Imaging - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Foucault, M.-L</creatorcontrib><creatorcontrib>Thomas, L</creatorcontrib><creatorcontrib>Goussard, S</creatorcontrib><creatorcontrib>Branchini, B.R</creatorcontrib><creatorcontrib>Grillot-Courvalin, C</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Foucault, M.-L</au><au>Thomas, L</au><au>Goussard, S</au><au>Branchini, B.R</au><au>Grillot-Courvalin, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Vivo Bioluminescence Imaging for the Study of Intestinal Colonization by Escherichia coli in Mice</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>2010-01-01</date><risdate>2010</risdate><volume>76</volume><issue>1</issue><spage>264</spage><epage>274</epage><pages>264-274</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><eissn>1098-6596</eissn><coden>AEMIDF</coden><abstract>Bioluminescence imaging (BLI) is emerging as a powerful tool for real-time monitoring of infections in living animals. However, since luciferases are oxygenases, it has been suggested that the requirement for oxygen may limit the use of BLI in anaerobic environments, such as the lumen of the gut. Strains of Escherichia coli harboring the genes for either the bacterial luciferase from Photorhabdus luminescens or the PpyRE-TS and PpyGR-TS firefly luciferase mutants of Photinus pyralis (red and green thermostable P. pyralis luciferase mutants, respectively) have been engineered and used to monitor intestinal colonization in the streptomycin-treated mouse model. There was excellent correlation between the bioluminescence signal measured in the feces (R² = 0.98) or transcutaneously in the abdominal region of whole animals (R² = 0.99) and the CFU counts in the feces of bacteria harboring the luxABCDE operon. Stability in vivo of the bioluminescence signal was achieved by constructing plasmid pAT881(pGB2ΩPamiluxABCDE), which allowed long-term monitoring of intestinal colonization without the need for antibiotic selection for plasmid maintenance. Levels of intestinal colonization by various strains of E. coli could be compared directly by simple recording of the bioluminescence signal in living animals. The difference in spectra of light emission of the PpyRE-TS and PpyGR-TS firefly luciferase mutants and dual bioluminescence detection allowed direct in vitro and in vivo quantification of two bacterial populations by measurement of red and green emitted signals and thus monitoring of the two populations simultaneously. This system offers a simple and direct method to study in vitro and in vivo competition between mutants and the parental strain. BLI is a useful tool to study intestinal colonization.</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>19880653</pmid><doi>10.1128/AEM.01686-09</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0099-2240
ispartof Applied and Environmental Microbiology, 2010-01, Vol.76 (1), p.264-274
issn 0099-2240
1098-5336
1098-6596
language eng
recordid cdi_proquest_journals_205970339
source American Society for Microbiology; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Anaerobic environments
Animals
Biological and medical sciences
Bioluminescence
Cells
Colony Count, Microbial
E coli
Escherichia coli
Escherichia coli - genetics
Escherichia coli - growth & development
Escherichia coli Infections - microbiology
Fundamental and applied biological sciences. Psychology
Gastrointestinal Tract - microbiology
Genetic engineering
Luciferases - genetics
Luciferases - metabolism
Luciferases, Bacterial - genetics
Luciferases, Bacterial - metabolism
Luminescence
Methods
Mice
Mice, Inbred BALB C
Microbiology
Mutation
Plasmids
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Rodents
Staining and Labeling - methods
Whole Body Imaging - methods
title In Vivo Bioluminescence Imaging for the Study of Intestinal Colonization by Escherichia coli in Mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T14%3A51%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Vivo%20Bioluminescence%20Imaging%20for%20the%20Study%20of%20Intestinal%20Colonization%20by%20Escherichia%20coli%20in%20Mice&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=Foucault,%20M.-L&rft.date=2010-01-01&rft.volume=76&rft.issue=1&rft.spage=264&rft.epage=274&rft.pages=264-274&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/AEM.01686-09&rft_dat=%3Cproquest_pasca%3E1933883281%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205970339&rft_id=info:pmid/19880653&rfr_iscdi=true