Protein Engineering of the Transcriptional Activator FhlA To Enhance Hydrogen Production in Escherichia coli

Escherichia coli produces H₂ from formate via the formate hydrogenlyase (FHL) complex during mixed acid fermentation; the FHL complex consists of formate dehydrogenase H (encoded by fdhF) for forming 2H⁺, 2e⁻, and CO₂ from formate and hydrogenase 3 (encoded by hycGE) for synthesizing H₂ from 2H⁺ and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and Environmental Microbiology 2009-09, Vol.75 (17), p.5639-5646
Hauptverfasser: Sanchez-Torres, Viviana, Maeda, Toshinari, Wood, Thomas K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5646
container_issue 17
container_start_page 5639
container_title Applied and Environmental Microbiology
container_volume 75
creator Sanchez-Torres, Viviana
Maeda, Toshinari
Wood, Thomas K
description Escherichia coli produces H₂ from formate via the formate hydrogenlyase (FHL) complex during mixed acid fermentation; the FHL complex consists of formate dehydrogenase H (encoded by fdhF) for forming 2H⁺, 2e⁻, and CO₂ from formate and hydrogenase 3 (encoded by hycGE) for synthesizing H₂ from 2H⁺ and 2e⁻. FHL protein production is activated by the σ⁵⁴ transcriptional activator FhlA, which activates transcription of fdhF and the hyc, hyp, and hydN-hypF operons. Here, through random mutagenesis using error-prone PCR over the whole gene, as well as over the fhlA region encoding the first 388 amino acids of the 692-amino-acid protein, we evolved FhlA to increase H₂ production. The amino acid replacements in FhlA133 (Q11H, L14V, Y177F, K245R, M288K, and I342F) increased hydrogen production ninefold, and the replacements in FhlA1157 (M6T, S35T, L113P, S146C, and E363K) increased hydrogen production fourfold. Saturation mutagenesis at the codons corresponding to the amino acid replacements in FhlA133 and at position E363 identified the importance of position L14 and of E363 for the increased activity; FhlA with replacements L14G and E363G increased hydrogen production (fourfold and sixfold, respectively) compared to FhlA. Whole-transcriptome and promoter reporter constructs revealed that the mechanism by which the FhlA133 changes increase hydrogen production is by increasing transcription of all of the genes activated by FhlA (the FHL complex). With FhlA133, transcription of PfdhF and Phyc is less sensitive to formate regulation, and with FhlA363 (E363G), Phyc transcription increases but Phyp transcription decreases and hydrogen production is less affected by the repressor HycA.
doi_str_mv 10.1128/AEM.00638-09
format Article
fullrecord <record><control><sourceid>proquest_highw</sourceid><recordid>TN_cdi_proquest_journals_205960006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21500729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-b2800088554055ce1df819854f815f95f382b72f5dfa00098b84d78d9a0c272b3</originalsourceid><addsrcrecordid>eNpdkUFv1DAQRi0EosvCjTNYHDiRMrbjxL5UWlVbilQEEtuz5ThO4iqxFztb1H-Pw64ocJrDPL_55A-h1wTOCaHi42b75RygYqIA-QStCEhRcMaqp2gFIGVBaQln6EVKdwBQQiWeozMiuSBlLVdo_BbDbJ3HW987b210vsehw_Ng8S5qn0x0-9kFr0e8MbO713OI-GoYN3gX8qNBe2Px9UMbQ289zrb2YBYeL85khmw0g9PYhNG9RM86PSb76jTX6PZqu7u8Lm6-fvp8ubkpDGd8LhoqclQhOC-Bc2NJ2wkiBS_z4J3kHRO0qWnH205nUIpGlG0tWqnB0Jo2bI0ujt79oZlsa6yfox7VPrpJxwcVtFP_brwbVB_uFa1ZLaTIgvcnQQw_DjbNanLJ2HHU3oZDUpRwgJrKDL77D7wLh5g_KzPAZQVLM2v04QiZGFKKtvuThIBaOlS5Q_W7QwWL883f6R_hU2mPRwfXDz9dtEqnSWk7qZorUitesQV6e4Q6HZTuo0vq9jsFwoBUNSslZb8A6VCsAA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205960006</pqid></control><display><type>article</type><title>Protein Engineering of the Transcriptional Activator FhlA To Enhance Hydrogen Production in Escherichia coli</title><source>American Society for Microbiology</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Sanchez-Torres, Viviana ; Maeda, Toshinari ; Wood, Thomas K</creator><creatorcontrib>Sanchez-Torres, Viviana ; Maeda, Toshinari ; Wood, Thomas K</creatorcontrib><description>Escherichia coli produces H₂ from formate via the formate hydrogenlyase (FHL) complex during mixed acid fermentation; the FHL complex consists of formate dehydrogenase H (encoded by fdhF) for forming 2H⁺, 2e⁻, and CO₂ from formate and hydrogenase 3 (encoded by hycGE) for synthesizing H₂ from 2H⁺ and 2e⁻. FHL protein production is activated by the σ⁵⁴ transcriptional activator FhlA, which activates transcription of fdhF and the hyc, hyp, and hydN-hypF operons. Here, through random mutagenesis using error-prone PCR over the whole gene, as well as over the fhlA region encoding the first 388 amino acids of the 692-amino-acid protein, we evolved FhlA to increase H₂ production. The amino acid replacements in FhlA133 (Q11H, L14V, Y177F, K245R, M288K, and I342F) increased hydrogen production ninefold, and the replacements in FhlA1157 (M6T, S35T, L113P, S146C, and E363K) increased hydrogen production fourfold. Saturation mutagenesis at the codons corresponding to the amino acid replacements in FhlA133 and at position E363 identified the importance of position L14 and of E363 for the increased activity; FhlA with replacements L14G and E363G increased hydrogen production (fourfold and sixfold, respectively) compared to FhlA. Whole-transcriptome and promoter reporter constructs revealed that the mechanism by which the FhlA133 changes increase hydrogen production is by increasing transcription of all of the genes activated by FhlA (the FHL complex). With FhlA133, transcription of PfdhF and Phyc is less sensitive to formate regulation, and with FhlA363 (E363G), Phyc transcription increases but Phyp transcription decreases and hydrogen production is less affected by the repressor HycA.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>EISSN: 1098-6596</identifier><identifier>DOI: 10.1128/AEM.00638-09</identifier><identifier>PMID: 19581479</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>Amino acids ; Artificial Gene Fusion ; Bacterial proteins ; beta-Galactosidase - genetics ; beta-Galactosidase - metabolism ; DNA Mutational Analysis ; E coli ; Enzymology and Protein Engineering ; Escherichia coli ; Escherichia coli - metabolism ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Formates - metabolism ; Gene Expression Profiling ; Gene Expression Regulation, Developmental ; Gene Order ; Genes ; Genes, Reporter ; Hydrogen ; Hydrogen - metabolism ; Microbiology ; Mutagenesis ; Mutant Proteins - genetics ; Mutant Proteins - metabolism ; Mutation, Missense ; Polymerase Chain Reaction - methods ; Protein Engineering ; Trans-Activators - genetics ; Trans-Activators - metabolism ; Up-Regulation</subject><ispartof>Applied and Environmental Microbiology, 2009-09, Vol.75 (17), p.5639-5646</ispartof><rights>Copyright American Society for Microbiology Sep 2009</rights><rights>Copyright © 2009, American Society for Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-b2800088554055ce1df819854f815f95f382b72f5dfa00098b84d78d9a0c272b3</citedby><cites>FETCH-LOGICAL-c535t-b2800088554055ce1df819854f815f95f382b72f5dfa00098b84d78d9a0c272b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2737898/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2737898/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,3175,3176,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19581479$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sanchez-Torres, Viviana</creatorcontrib><creatorcontrib>Maeda, Toshinari</creatorcontrib><creatorcontrib>Wood, Thomas K</creatorcontrib><title>Protein Engineering of the Transcriptional Activator FhlA To Enhance Hydrogen Production in Escherichia coli</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>Escherichia coli produces H₂ from formate via the formate hydrogenlyase (FHL) complex during mixed acid fermentation; the FHL complex consists of formate dehydrogenase H (encoded by fdhF) for forming 2H⁺, 2e⁻, and CO₂ from formate and hydrogenase 3 (encoded by hycGE) for synthesizing H₂ from 2H⁺ and 2e⁻. FHL protein production is activated by the σ⁵⁴ transcriptional activator FhlA, which activates transcription of fdhF and the hyc, hyp, and hydN-hypF operons. Here, through random mutagenesis using error-prone PCR over the whole gene, as well as over the fhlA region encoding the first 388 amino acids of the 692-amino-acid protein, we evolved FhlA to increase H₂ production. The amino acid replacements in FhlA133 (Q11H, L14V, Y177F, K245R, M288K, and I342F) increased hydrogen production ninefold, and the replacements in FhlA1157 (M6T, S35T, L113P, S146C, and E363K) increased hydrogen production fourfold. Saturation mutagenesis at the codons corresponding to the amino acid replacements in FhlA133 and at position E363 identified the importance of position L14 and of E363 for the increased activity; FhlA with replacements L14G and E363G increased hydrogen production (fourfold and sixfold, respectively) compared to FhlA. Whole-transcriptome and promoter reporter constructs revealed that the mechanism by which the FhlA133 changes increase hydrogen production is by increasing transcription of all of the genes activated by FhlA (the FHL complex). With FhlA133, transcription of PfdhF and Phyc is less sensitive to formate regulation, and with FhlA363 (E363G), Phyc transcription increases but Phyp transcription decreases and hydrogen production is less affected by the repressor HycA.</description><subject>Amino acids</subject><subject>Artificial Gene Fusion</subject><subject>Bacterial proteins</subject><subject>beta-Galactosidase - genetics</subject><subject>beta-Galactosidase - metabolism</subject><subject>DNA Mutational Analysis</subject><subject>E coli</subject><subject>Enzymology and Protein Engineering</subject><subject>Escherichia coli</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Formates - metabolism</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene Order</subject><subject>Genes</subject><subject>Genes, Reporter</subject><subject>Hydrogen</subject><subject>Hydrogen - metabolism</subject><subject>Microbiology</subject><subject>Mutagenesis</subject><subject>Mutant Proteins - genetics</subject><subject>Mutant Proteins - metabolism</subject><subject>Mutation, Missense</subject><subject>Polymerase Chain Reaction - methods</subject><subject>Protein Engineering</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - metabolism</subject><subject>Up-Regulation</subject><issn>0099-2240</issn><issn>1098-5336</issn><issn>1098-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUFv1DAQRi0EosvCjTNYHDiRMrbjxL5UWlVbilQEEtuz5ThO4iqxFztb1H-Pw64ocJrDPL_55A-h1wTOCaHi42b75RygYqIA-QStCEhRcMaqp2gFIGVBaQln6EVKdwBQQiWeozMiuSBlLVdo_BbDbJ3HW987b210vsehw_Ng8S5qn0x0-9kFr0e8MbO713OI-GoYN3gX8qNBe2Px9UMbQ289zrb2YBYeL85khmw0g9PYhNG9RM86PSb76jTX6PZqu7u8Lm6-fvp8ubkpDGd8LhoqclQhOC-Bc2NJ2wkiBS_z4J3kHRO0qWnH205nUIpGlG0tWqnB0Jo2bI0ujt79oZlsa6yfox7VPrpJxwcVtFP_brwbVB_uFa1ZLaTIgvcnQQw_DjbNanLJ2HHU3oZDUpRwgJrKDL77D7wLh5g_KzPAZQVLM2v04QiZGFKKtvuThIBaOlS5Q_W7QwWL883f6R_hU2mPRwfXDz9dtEqnSWk7qZorUitesQV6e4Q6HZTuo0vq9jsFwoBUNSslZb8A6VCsAA</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Sanchez-Torres, Viviana</creator><creator>Maeda, Toshinari</creator><creator>Wood, Thomas K</creator><general>American Society for Microbiology</general><general>American Society for Microbiology (ASM)</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope></search><sort><creationdate>20090901</creationdate><title>Protein Engineering of the Transcriptional Activator FhlA To Enhance Hydrogen Production in Escherichia coli</title><author>Sanchez-Torres, Viviana ; Maeda, Toshinari ; Wood, Thomas K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-b2800088554055ce1df819854f815f95f382b72f5dfa00098b84d78d9a0c272b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amino acids</topic><topic>Artificial Gene Fusion</topic><topic>Bacterial proteins</topic><topic>beta-Galactosidase - genetics</topic><topic>beta-Galactosidase - metabolism</topic><topic>DNA Mutational Analysis</topic><topic>E coli</topic><topic>Enzymology and Protein Engineering</topic><topic>Escherichia coli</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Formates - metabolism</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene Order</topic><topic>Genes</topic><topic>Genes, Reporter</topic><topic>Hydrogen</topic><topic>Hydrogen - metabolism</topic><topic>Microbiology</topic><topic>Mutagenesis</topic><topic>Mutant Proteins - genetics</topic><topic>Mutant Proteins - metabolism</topic><topic>Mutation, Missense</topic><topic>Polymerase Chain Reaction - methods</topic><topic>Protein Engineering</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - metabolism</topic><topic>Up-Regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanchez-Torres, Viviana</creatorcontrib><creatorcontrib>Maeda, Toshinari</creatorcontrib><creatorcontrib>Wood, Thomas K</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanchez-Torres, Viviana</au><au>Maeda, Toshinari</au><au>Wood, Thomas K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protein Engineering of the Transcriptional Activator FhlA To Enhance Hydrogen Production in Escherichia coli</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>2009-09-01</date><risdate>2009</risdate><volume>75</volume><issue>17</issue><spage>5639</spage><epage>5646</epage><pages>5639-5646</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><eissn>1098-6596</eissn><coden>AEMIDF</coden><abstract>Escherichia coli produces H₂ from formate via the formate hydrogenlyase (FHL) complex during mixed acid fermentation; the FHL complex consists of formate dehydrogenase H (encoded by fdhF) for forming 2H⁺, 2e⁻, and CO₂ from formate and hydrogenase 3 (encoded by hycGE) for synthesizing H₂ from 2H⁺ and 2e⁻. FHL protein production is activated by the σ⁵⁴ transcriptional activator FhlA, which activates transcription of fdhF and the hyc, hyp, and hydN-hypF operons. Here, through random mutagenesis using error-prone PCR over the whole gene, as well as over the fhlA region encoding the first 388 amino acids of the 692-amino-acid protein, we evolved FhlA to increase H₂ production. The amino acid replacements in FhlA133 (Q11H, L14V, Y177F, K245R, M288K, and I342F) increased hydrogen production ninefold, and the replacements in FhlA1157 (M6T, S35T, L113P, S146C, and E363K) increased hydrogen production fourfold. Saturation mutagenesis at the codons corresponding to the amino acid replacements in FhlA133 and at position E363 identified the importance of position L14 and of E363 for the increased activity; FhlA with replacements L14G and E363G increased hydrogen production (fourfold and sixfold, respectively) compared to FhlA. Whole-transcriptome and promoter reporter constructs revealed that the mechanism by which the FhlA133 changes increase hydrogen production is by increasing transcription of all of the genes activated by FhlA (the FHL complex). With FhlA133, transcription of PfdhF and Phyc is less sensitive to formate regulation, and with FhlA363 (E363G), Phyc transcription increases but Phyp transcription decreases and hydrogen production is less affected by the repressor HycA.</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>19581479</pmid><doi>10.1128/AEM.00638-09</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0099-2240
ispartof Applied and Environmental Microbiology, 2009-09, Vol.75 (17), p.5639-5646
issn 0099-2240
1098-5336
1098-6596
language eng
recordid cdi_proquest_journals_205960006
source American Society for Microbiology; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Amino acids
Artificial Gene Fusion
Bacterial proteins
beta-Galactosidase - genetics
beta-Galactosidase - metabolism
DNA Mutational Analysis
E coli
Enzymology and Protein Engineering
Escherichia coli
Escherichia coli - metabolism
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Formates - metabolism
Gene Expression Profiling
Gene Expression Regulation, Developmental
Gene Order
Genes
Genes, Reporter
Hydrogen
Hydrogen - metabolism
Microbiology
Mutagenesis
Mutant Proteins - genetics
Mutant Proteins - metabolism
Mutation, Missense
Polymerase Chain Reaction - methods
Protein Engineering
Trans-Activators - genetics
Trans-Activators - metabolism
Up-Regulation
title Protein Engineering of the Transcriptional Activator FhlA To Enhance Hydrogen Production in Escherichia coli
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T16%3A43%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_highw&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protein%20Engineering%20of%20the%20Transcriptional%20Activator%20FhlA%20To%20Enhance%20Hydrogen%20Production%20in%20Escherichia%20coli&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=Sanchez-Torres,%20Viviana&rft.date=2009-09-01&rft.volume=75&rft.issue=17&rft.spage=5639&rft.epage=5646&rft.pages=5639-5646&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/AEM.00638-09&rft_dat=%3Cproquest_highw%3E21500729%3C/proquest_highw%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205960006&rft_id=info:pmid/19581479&rfr_iscdi=true