Protein Engineering of the Transcriptional Activator FhlA To Enhance Hydrogen Production in Escherichia coli
Escherichia coli produces H₂ from formate via the formate hydrogenlyase (FHL) complex during mixed acid fermentation; the FHL complex consists of formate dehydrogenase H (encoded by fdhF) for forming 2H⁺, 2e⁻, and CO₂ from formate and hydrogenase 3 (encoded by hycGE) for synthesizing H₂ from 2H⁺ and...
Gespeichert in:
Veröffentlicht in: | Applied and Environmental Microbiology 2009-09, Vol.75 (17), p.5639-5646 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5646 |
---|---|
container_issue | 17 |
container_start_page | 5639 |
container_title | Applied and Environmental Microbiology |
container_volume | 75 |
creator | Sanchez-Torres, Viviana Maeda, Toshinari Wood, Thomas K |
description | Escherichia coli produces H₂ from formate via the formate hydrogenlyase (FHL) complex during mixed acid fermentation; the FHL complex consists of formate dehydrogenase H (encoded by fdhF) for forming 2H⁺, 2e⁻, and CO₂ from formate and hydrogenase 3 (encoded by hycGE) for synthesizing H₂ from 2H⁺ and 2e⁻. FHL protein production is activated by the σ⁵⁴ transcriptional activator FhlA, which activates transcription of fdhF and the hyc, hyp, and hydN-hypF operons. Here, through random mutagenesis using error-prone PCR over the whole gene, as well as over the fhlA region encoding the first 388 amino acids of the 692-amino-acid protein, we evolved FhlA to increase H₂ production. The amino acid replacements in FhlA133 (Q11H, L14V, Y177F, K245R, M288K, and I342F) increased hydrogen production ninefold, and the replacements in FhlA1157 (M6T, S35T, L113P, S146C, and E363K) increased hydrogen production fourfold. Saturation mutagenesis at the codons corresponding to the amino acid replacements in FhlA133 and at position E363 identified the importance of position L14 and of E363 for the increased activity; FhlA with replacements L14G and E363G increased hydrogen production (fourfold and sixfold, respectively) compared to FhlA. Whole-transcriptome and promoter reporter constructs revealed that the mechanism by which the FhlA133 changes increase hydrogen production is by increasing transcription of all of the genes activated by FhlA (the FHL complex). With FhlA133, transcription of PfdhF and Phyc is less sensitive to formate regulation, and with FhlA363 (E363G), Phyc transcription increases but Phyp transcription decreases and hydrogen production is less affected by the repressor HycA. |
doi_str_mv | 10.1128/AEM.00638-09 |
format | Article |
fullrecord | <record><control><sourceid>proquest_highw</sourceid><recordid>TN_cdi_proquest_journals_205960006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21500729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-b2800088554055ce1df819854f815f95f382b72f5dfa00098b84d78d9a0c272b3</originalsourceid><addsrcrecordid>eNpdkUFv1DAQRi0EosvCjTNYHDiRMrbjxL5UWlVbilQEEtuz5ThO4iqxFztb1H-Pw64ocJrDPL_55A-h1wTOCaHi42b75RygYqIA-QStCEhRcMaqp2gFIGVBaQln6EVKdwBQQiWeozMiuSBlLVdo_BbDbJ3HW987b210vsehw_Ng8S5qn0x0-9kFr0e8MbO713OI-GoYN3gX8qNBe2Px9UMbQ289zrb2YBYeL85khmw0g9PYhNG9RM86PSb76jTX6PZqu7u8Lm6-fvp8ubkpDGd8LhoqclQhOC-Bc2NJ2wkiBS_z4J3kHRO0qWnH205nUIpGlG0tWqnB0Jo2bI0ujt79oZlsa6yfox7VPrpJxwcVtFP_brwbVB_uFa1ZLaTIgvcnQQw_DjbNanLJ2HHU3oZDUpRwgJrKDL77D7wLh5g_KzPAZQVLM2v04QiZGFKKtvuThIBaOlS5Q_W7QwWL883f6R_hU2mPRwfXDz9dtEqnSWk7qZorUitesQV6e4Q6HZTuo0vq9jsFwoBUNSslZb8A6VCsAA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205960006</pqid></control><display><type>article</type><title>Protein Engineering of the Transcriptional Activator FhlA To Enhance Hydrogen Production in Escherichia coli</title><source>American Society for Microbiology</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Sanchez-Torres, Viviana ; Maeda, Toshinari ; Wood, Thomas K</creator><creatorcontrib>Sanchez-Torres, Viviana ; Maeda, Toshinari ; Wood, Thomas K</creatorcontrib><description>Escherichia coli produces H₂ from formate via the formate hydrogenlyase (FHL) complex during mixed acid fermentation; the FHL complex consists of formate dehydrogenase H (encoded by fdhF) for forming 2H⁺, 2e⁻, and CO₂ from formate and hydrogenase 3 (encoded by hycGE) for synthesizing H₂ from 2H⁺ and 2e⁻. FHL protein production is activated by the σ⁵⁴ transcriptional activator FhlA, which activates transcription of fdhF and the hyc, hyp, and hydN-hypF operons. Here, through random mutagenesis using error-prone PCR over the whole gene, as well as over the fhlA region encoding the first 388 amino acids of the 692-amino-acid protein, we evolved FhlA to increase H₂ production. The amino acid replacements in FhlA133 (Q11H, L14V, Y177F, K245R, M288K, and I342F) increased hydrogen production ninefold, and the replacements in FhlA1157 (M6T, S35T, L113P, S146C, and E363K) increased hydrogen production fourfold. Saturation mutagenesis at the codons corresponding to the amino acid replacements in FhlA133 and at position E363 identified the importance of position L14 and of E363 for the increased activity; FhlA with replacements L14G and E363G increased hydrogen production (fourfold and sixfold, respectively) compared to FhlA. Whole-transcriptome and promoter reporter constructs revealed that the mechanism by which the FhlA133 changes increase hydrogen production is by increasing transcription of all of the genes activated by FhlA (the FHL complex). With FhlA133, transcription of PfdhF and Phyc is less sensitive to formate regulation, and with FhlA363 (E363G), Phyc transcription increases but Phyp transcription decreases and hydrogen production is less affected by the repressor HycA.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>EISSN: 1098-6596</identifier><identifier>DOI: 10.1128/AEM.00638-09</identifier><identifier>PMID: 19581479</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>Amino acids ; Artificial Gene Fusion ; Bacterial proteins ; beta-Galactosidase - genetics ; beta-Galactosidase - metabolism ; DNA Mutational Analysis ; E coli ; Enzymology and Protein Engineering ; Escherichia coli ; Escherichia coli - metabolism ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Formates - metabolism ; Gene Expression Profiling ; Gene Expression Regulation, Developmental ; Gene Order ; Genes ; Genes, Reporter ; Hydrogen ; Hydrogen - metabolism ; Microbiology ; Mutagenesis ; Mutant Proteins - genetics ; Mutant Proteins - metabolism ; Mutation, Missense ; Polymerase Chain Reaction - methods ; Protein Engineering ; Trans-Activators - genetics ; Trans-Activators - metabolism ; Up-Regulation</subject><ispartof>Applied and Environmental Microbiology, 2009-09, Vol.75 (17), p.5639-5646</ispartof><rights>Copyright American Society for Microbiology Sep 2009</rights><rights>Copyright © 2009, American Society for Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-b2800088554055ce1df819854f815f95f382b72f5dfa00098b84d78d9a0c272b3</citedby><cites>FETCH-LOGICAL-c535t-b2800088554055ce1df819854f815f95f382b72f5dfa00098b84d78d9a0c272b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2737898/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2737898/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,3175,3176,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19581479$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sanchez-Torres, Viviana</creatorcontrib><creatorcontrib>Maeda, Toshinari</creatorcontrib><creatorcontrib>Wood, Thomas K</creatorcontrib><title>Protein Engineering of the Transcriptional Activator FhlA To Enhance Hydrogen Production in Escherichia coli</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>Escherichia coli produces H₂ from formate via the formate hydrogenlyase (FHL) complex during mixed acid fermentation; the FHL complex consists of formate dehydrogenase H (encoded by fdhF) for forming 2H⁺, 2e⁻, and CO₂ from formate and hydrogenase 3 (encoded by hycGE) for synthesizing H₂ from 2H⁺ and 2e⁻. FHL protein production is activated by the σ⁵⁴ transcriptional activator FhlA, which activates transcription of fdhF and the hyc, hyp, and hydN-hypF operons. Here, through random mutagenesis using error-prone PCR over the whole gene, as well as over the fhlA region encoding the first 388 amino acids of the 692-amino-acid protein, we evolved FhlA to increase H₂ production. The amino acid replacements in FhlA133 (Q11H, L14V, Y177F, K245R, M288K, and I342F) increased hydrogen production ninefold, and the replacements in FhlA1157 (M6T, S35T, L113P, S146C, and E363K) increased hydrogen production fourfold. Saturation mutagenesis at the codons corresponding to the amino acid replacements in FhlA133 and at position E363 identified the importance of position L14 and of E363 for the increased activity; FhlA with replacements L14G and E363G increased hydrogen production (fourfold and sixfold, respectively) compared to FhlA. Whole-transcriptome and promoter reporter constructs revealed that the mechanism by which the FhlA133 changes increase hydrogen production is by increasing transcription of all of the genes activated by FhlA (the FHL complex). With FhlA133, transcription of PfdhF and Phyc is less sensitive to formate regulation, and with FhlA363 (E363G), Phyc transcription increases but Phyp transcription decreases and hydrogen production is less affected by the repressor HycA.</description><subject>Amino acids</subject><subject>Artificial Gene Fusion</subject><subject>Bacterial proteins</subject><subject>beta-Galactosidase - genetics</subject><subject>beta-Galactosidase - metabolism</subject><subject>DNA Mutational Analysis</subject><subject>E coli</subject><subject>Enzymology and Protein Engineering</subject><subject>Escherichia coli</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Formates - metabolism</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene Order</subject><subject>Genes</subject><subject>Genes, Reporter</subject><subject>Hydrogen</subject><subject>Hydrogen - metabolism</subject><subject>Microbiology</subject><subject>Mutagenesis</subject><subject>Mutant Proteins - genetics</subject><subject>Mutant Proteins - metabolism</subject><subject>Mutation, Missense</subject><subject>Polymerase Chain Reaction - methods</subject><subject>Protein Engineering</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - metabolism</subject><subject>Up-Regulation</subject><issn>0099-2240</issn><issn>1098-5336</issn><issn>1098-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUFv1DAQRi0EosvCjTNYHDiRMrbjxL5UWlVbilQEEtuz5ThO4iqxFztb1H-Pw64ocJrDPL_55A-h1wTOCaHi42b75RygYqIA-QStCEhRcMaqp2gFIGVBaQln6EVKdwBQQiWeozMiuSBlLVdo_BbDbJ3HW987b210vsehw_Ng8S5qn0x0-9kFr0e8MbO713OI-GoYN3gX8qNBe2Px9UMbQ289zrb2YBYeL85khmw0g9PYhNG9RM86PSb76jTX6PZqu7u8Lm6-fvp8ubkpDGd8LhoqclQhOC-Bc2NJ2wkiBS_z4J3kHRO0qWnH205nUIpGlG0tWqnB0Jo2bI0ujt79oZlsa6yfox7VPrpJxwcVtFP_brwbVB_uFa1ZLaTIgvcnQQw_DjbNanLJ2HHU3oZDUpRwgJrKDL77D7wLh5g_KzPAZQVLM2v04QiZGFKKtvuThIBaOlS5Q_W7QwWL883f6R_hU2mPRwfXDz9dtEqnSWk7qZorUitesQV6e4Q6HZTuo0vq9jsFwoBUNSslZb8A6VCsAA</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Sanchez-Torres, Viviana</creator><creator>Maeda, Toshinari</creator><creator>Wood, Thomas K</creator><general>American Society for Microbiology</general><general>American Society for Microbiology (ASM)</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope></search><sort><creationdate>20090901</creationdate><title>Protein Engineering of the Transcriptional Activator FhlA To Enhance Hydrogen Production in Escherichia coli</title><author>Sanchez-Torres, Viviana ; Maeda, Toshinari ; Wood, Thomas K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-b2800088554055ce1df819854f815f95f382b72f5dfa00098b84d78d9a0c272b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amino acids</topic><topic>Artificial Gene Fusion</topic><topic>Bacterial proteins</topic><topic>beta-Galactosidase - genetics</topic><topic>beta-Galactosidase - metabolism</topic><topic>DNA Mutational Analysis</topic><topic>E coli</topic><topic>Enzymology and Protein Engineering</topic><topic>Escherichia coli</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Formates - metabolism</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene Order</topic><topic>Genes</topic><topic>Genes, Reporter</topic><topic>Hydrogen</topic><topic>Hydrogen - metabolism</topic><topic>Microbiology</topic><topic>Mutagenesis</topic><topic>Mutant Proteins - genetics</topic><topic>Mutant Proteins - metabolism</topic><topic>Mutation, Missense</topic><topic>Polymerase Chain Reaction - methods</topic><topic>Protein Engineering</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - metabolism</topic><topic>Up-Regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanchez-Torres, Viviana</creatorcontrib><creatorcontrib>Maeda, Toshinari</creatorcontrib><creatorcontrib>Wood, Thomas K</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanchez-Torres, Viviana</au><au>Maeda, Toshinari</au><au>Wood, Thomas K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protein Engineering of the Transcriptional Activator FhlA To Enhance Hydrogen Production in Escherichia coli</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>2009-09-01</date><risdate>2009</risdate><volume>75</volume><issue>17</issue><spage>5639</spage><epage>5646</epage><pages>5639-5646</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><eissn>1098-6596</eissn><coden>AEMIDF</coden><abstract>Escherichia coli produces H₂ from formate via the formate hydrogenlyase (FHL) complex during mixed acid fermentation; the FHL complex consists of formate dehydrogenase H (encoded by fdhF) for forming 2H⁺, 2e⁻, and CO₂ from formate and hydrogenase 3 (encoded by hycGE) for synthesizing H₂ from 2H⁺ and 2e⁻. FHL protein production is activated by the σ⁵⁴ transcriptional activator FhlA, which activates transcription of fdhF and the hyc, hyp, and hydN-hypF operons. Here, through random mutagenesis using error-prone PCR over the whole gene, as well as over the fhlA region encoding the first 388 amino acids of the 692-amino-acid protein, we evolved FhlA to increase H₂ production. The amino acid replacements in FhlA133 (Q11H, L14V, Y177F, K245R, M288K, and I342F) increased hydrogen production ninefold, and the replacements in FhlA1157 (M6T, S35T, L113P, S146C, and E363K) increased hydrogen production fourfold. Saturation mutagenesis at the codons corresponding to the amino acid replacements in FhlA133 and at position E363 identified the importance of position L14 and of E363 for the increased activity; FhlA with replacements L14G and E363G increased hydrogen production (fourfold and sixfold, respectively) compared to FhlA. Whole-transcriptome and promoter reporter constructs revealed that the mechanism by which the FhlA133 changes increase hydrogen production is by increasing transcription of all of the genes activated by FhlA (the FHL complex). With FhlA133, transcription of PfdhF and Phyc is less sensitive to formate regulation, and with FhlA363 (E363G), Phyc transcription increases but Phyp transcription decreases and hydrogen production is less affected by the repressor HycA.</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>19581479</pmid><doi>10.1128/AEM.00638-09</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0099-2240 |
ispartof | Applied and Environmental Microbiology, 2009-09, Vol.75 (17), p.5639-5646 |
issn | 0099-2240 1098-5336 1098-6596 |
language | eng |
recordid | cdi_proquest_journals_205960006 |
source | American Society for Microbiology; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Amino acids Artificial Gene Fusion Bacterial proteins beta-Galactosidase - genetics beta-Galactosidase - metabolism DNA Mutational Analysis E coli Enzymology and Protein Engineering Escherichia coli Escherichia coli - metabolism Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism Formates - metabolism Gene Expression Profiling Gene Expression Regulation, Developmental Gene Order Genes Genes, Reporter Hydrogen Hydrogen - metabolism Microbiology Mutagenesis Mutant Proteins - genetics Mutant Proteins - metabolism Mutation, Missense Polymerase Chain Reaction - methods Protein Engineering Trans-Activators - genetics Trans-Activators - metabolism Up-Regulation |
title | Protein Engineering of the Transcriptional Activator FhlA To Enhance Hydrogen Production in Escherichia coli |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T16%3A43%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_highw&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protein%20Engineering%20of%20the%20Transcriptional%20Activator%20FhlA%20To%20Enhance%20Hydrogen%20Production%20in%20Escherichia%20coli&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=Sanchez-Torres,%20Viviana&rft.date=2009-09-01&rft.volume=75&rft.issue=17&rft.spage=5639&rft.epage=5646&rft.pages=5639-5646&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/AEM.00638-09&rft_dat=%3Cproquest_highw%3E21500729%3C/proquest_highw%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205960006&rft_id=info:pmid/19581479&rfr_iscdi=true |