A Variation of Coretractable Modules
A right R -module M is called coretractable ( s-coretractable ) if Hom ( M / K , M ) ≠ 0 for any proper submodule (supplement submodule) K of M . In this article, we continue the study of coretractable modules. Then we study s-coretractable modules. It is shown that this property is not inherited by...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Malaysian Mathematical Sciences Society 2018-07, Vol.41 (3), p.1275-1291 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A right
R
-module
M
is called
coretractable
(
s-coretractable
) if
Hom
(
M
/
K
,
M
)
≠
0
for any proper submodule (supplement submodule)
K
of
M
. In this article, we continue the study of coretractable modules. Then we study s-coretractable modules. It is shown that this property is not inherited by direct summands and a direct sum of s-coretractable modules may not be s-coretractable. Examples are provided to illustrate and delineate the results. |
---|---|
ISSN: | 0126-6705 2180-4206 |
DOI: | 10.1007/s40840-016-0390-7 |