Initial reductive reactions in aerobic microbial metabolism of 2,4,6-trinitrotoluene
Because of its high electron deficiency, initial microbial transformations of 2,4,6-trinitrotoluene (TNT) are characterized by reductive rather than oxidation reactions. The reduction of the nitro groups seems to be the dominating mechanism, whereas hydrogenation of the aromatic ring, as described f...
Gespeichert in:
Veröffentlicht in: | Applied and Environmental Microbiology 1998-01, Vol.64 (1), p.246-252 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 252 |
---|---|
container_issue | 1 |
container_start_page | 246 |
container_title | Applied and Environmental Microbiology |
container_volume | 64 |
creator | Vorbeck, C Lenke, H Fischer, P Spain, J.C Knackmuss, H.J |
description | Because of its high electron deficiency, initial microbial transformations of 2,4,6-trinitrotoluene (TNT) are characterized by reductive rather than oxidation reactions. The reduction of the nitro groups seems to be the dominating mechanism, whereas hydrogenation of the aromatic ring, as described for picric acid, appears to be of minor importance. Thus, two bacterial strains enriched with TNT as a sole source of nitrogen under aerobic conditions, a gram-negative strain called TNT-8 and a gram-positive strain called TNT-32, carried out nitro-group reduction. In contrast, both a picric acid-utilizing Rhodococcus erythropolis strain, HL PM-1, and a 4-nitrotoluene-utilizing Mycobacterium sp. strain, HL 4-NT-1 possessed reductive enzyme systems, which catalyze ring hydrogenation, i.e., the addition of a hydride ion to the aromatic ring of TNT. The hydride-Meisenheimer complex thus formed (H(-)-TNT) was further converted to a yellow metabolite, which by electrospray mass and nuclear magnetic resonance spectral analyses was established as the protonated dihydride-Meisenheimer complex of TNT (2H(-)-TNT). Formation of hydride complexes could not be identified with the TNT-enriched strains TNT-8 and TNT-32, or with Pseudomonas sp. clone A (2NT-), for which such a mechanism has been proposed. Correspondingly, reductive denitration of TNT did not occur |
doi_str_mv | 10.1128/aem.64.1.246-252.1998 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_journals_205935923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26932190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c644t-5247b5025634f4eeaa28a4e47c4cc8b9aeb96ad5e9ac55b72c26f43b05ad5f6c3</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhi0EotvCTyiKECqXZrGdsRMfeqiqApWKONCerYnX2XWVxMVOivj3zGpXy8eBk0f2MzPvzGvGTgVfCiGbD-iHpYalWErQpVRyKYxpnrGF4KYpVVXp52zBuTGllMCP2HHOD5xz4Lp5yY6ErsBAAwt2dzOGKWBfJL-a3RSePEVIQRxzEcYCfYptcMUQ3DYgcPATtrEPeShiV8hzONfllAKVSXGK_exH_4q96LDP_vX-PGH3H6_vrj6Xt18_3Vxd3pZOA0ylklC3iktFajrwHlE2CB5qB841rUHfGo0r5Q06pdpaOqk7qFqu6LLTrjphF7u6j3M7-JXz45Swt48pDJh-2ojB_v0yho1dxycrqDMXlP9-n5_i99nnyQ4hO9_3OPo4Z1tXFYAxUhF59l9SANSaxiDw7T_gQ5zTSFuwkitTKSMrgtQOop3mnHx3kCy43bprL6-_WA1WWHLXkrt26y7lvflz3t9ZezsJeLcHMDvsu4SjC_nASQGVVpywYodtwnrzIyRvMQ-WftShJyGnO6TDaHGdqMr9NxJR85pvpfwCx4PCfQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205935923</pqid></control><display><type>article</type><title>Initial reductive reactions in aerobic microbial metabolism of 2,4,6-trinitrotoluene</title><source>American Society for Microbiology</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Vorbeck, C ; Lenke, H ; Fischer, P ; Spain, J.C ; Knackmuss, H.J</creator><creatorcontrib>Vorbeck, C ; Lenke, H ; Fischer, P ; Spain, J.C ; Knackmuss, H.J</creatorcontrib><description>Because of its high electron deficiency, initial microbial transformations of 2,4,6-trinitrotoluene (TNT) are characterized by reductive rather than oxidation reactions. The reduction of the nitro groups seems to be the dominating mechanism, whereas hydrogenation of the aromatic ring, as described for picric acid, appears to be of minor importance. Thus, two bacterial strains enriched with TNT as a sole source of nitrogen under aerobic conditions, a gram-negative strain called TNT-8 and a gram-positive strain called TNT-32, carried out nitro-group reduction. In contrast, both a picric acid-utilizing Rhodococcus erythropolis strain, HL PM-1, and a 4-nitrotoluene-utilizing Mycobacterium sp. strain, HL 4-NT-1 possessed reductive enzyme systems, which catalyze ring hydrogenation, i.e., the addition of a hydride ion to the aromatic ring of TNT. The hydride-Meisenheimer complex thus formed (H(-)-TNT) was further converted to a yellow metabolite, which by electrospray mass and nuclear magnetic resonance spectral analyses was established as the protonated dihydride-Meisenheimer complex of TNT (2H(-)-TNT). Formation of hydride complexes could not be identified with the TNT-enriched strains TNT-8 and TNT-32, or with Pseudomonas sp. clone A (2NT-), for which such a mechanism has been proposed. Correspondingly, reductive denitration of TNT did not occur</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>DOI: 10.1128/aem.64.1.246-252.1998</identifier><identifier>PMID: 16349484</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>Bacteria ; BIODEGRADACION ; BIODEGRADATION ; Biological and medical sciences ; Biology of microorganisms of confirmed or potential industrial interest ; Biotechnology ; COMPOSE ORGANOAZOTE ; COMPUESTO ORGANICO DEL NITROGENO ; Environmental and Public Health Microbiology ; Explosives ; Fundamental and applied biological sciences. Psychology ; Metabolism ; MICROBIAL DEGRADATION ; Microbiology ; Mission oriented research ; ORGANIC NITROGEN COMPOUNDS ; Physiology and metabolism ; PSEUDOMONAS ; REDUCCION ; REDUCTION</subject><ispartof>Applied and Environmental Microbiology, 1998-01, Vol.64 (1), p.246-252</ispartof><rights>1998 INIST-CNRS</rights><rights>Copyright American Society for Microbiology Jan 1998</rights><rights>Copyright © 1998, American Society for Microbiology 1998</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c644t-5247b5025634f4eeaa28a4e47c4cc8b9aeb96ad5e9ac55b72c26f43b05ad5f6c3</citedby><cites>FETCH-LOGICAL-c644t-5247b5025634f4eeaa28a4e47c4cc8b9aeb96ad5e9ac55b72c26f43b05ad5f6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC124701/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC124701/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,3188,3189,4024,27923,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2143650$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16349484$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vorbeck, C</creatorcontrib><creatorcontrib>Lenke, H</creatorcontrib><creatorcontrib>Fischer, P</creatorcontrib><creatorcontrib>Spain, J.C</creatorcontrib><creatorcontrib>Knackmuss, H.J</creatorcontrib><title>Initial reductive reactions in aerobic microbial metabolism of 2,4,6-trinitrotoluene</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>Because of its high electron deficiency, initial microbial transformations of 2,4,6-trinitrotoluene (TNT) are characterized by reductive rather than oxidation reactions. The reduction of the nitro groups seems to be the dominating mechanism, whereas hydrogenation of the aromatic ring, as described for picric acid, appears to be of minor importance. Thus, two bacterial strains enriched with TNT as a sole source of nitrogen under aerobic conditions, a gram-negative strain called TNT-8 and a gram-positive strain called TNT-32, carried out nitro-group reduction. In contrast, both a picric acid-utilizing Rhodococcus erythropolis strain, HL PM-1, and a 4-nitrotoluene-utilizing Mycobacterium sp. strain, HL 4-NT-1 possessed reductive enzyme systems, which catalyze ring hydrogenation, i.e., the addition of a hydride ion to the aromatic ring of TNT. The hydride-Meisenheimer complex thus formed (H(-)-TNT) was further converted to a yellow metabolite, which by electrospray mass and nuclear magnetic resonance spectral analyses was established as the protonated dihydride-Meisenheimer complex of TNT (2H(-)-TNT). Formation of hydride complexes could not be identified with the TNT-enriched strains TNT-8 and TNT-32, or with Pseudomonas sp. clone A (2NT-), for which such a mechanism has been proposed. Correspondingly, reductive denitration of TNT did not occur</description><subject>Bacteria</subject><subject>BIODEGRADACION</subject><subject>BIODEGRADATION</subject><subject>Biological and medical sciences</subject><subject>Biology of microorganisms of confirmed or potential industrial interest</subject><subject>Biotechnology</subject><subject>COMPOSE ORGANOAZOTE</subject><subject>COMPUESTO ORGANICO DEL NITROGENO</subject><subject>Environmental and Public Health Microbiology</subject><subject>Explosives</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Metabolism</subject><subject>MICROBIAL DEGRADATION</subject><subject>Microbiology</subject><subject>Mission oriented research</subject><subject>ORGANIC NITROGEN COMPOUNDS</subject><subject>Physiology and metabolism</subject><subject>PSEUDOMONAS</subject><subject>REDUCCION</subject><subject>REDUCTION</subject><issn>0099-2240</issn><issn>1098-5336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNp9kk1v1DAQhi0EotvCTyiKECqXZrGdsRMfeqiqApWKONCerYnX2XWVxMVOivj3zGpXy8eBk0f2MzPvzGvGTgVfCiGbD-iHpYalWErQpVRyKYxpnrGF4KYpVVXp52zBuTGllMCP2HHOD5xz4Lp5yY6ErsBAAwt2dzOGKWBfJL-a3RSePEVIQRxzEcYCfYptcMUQ3DYgcPATtrEPeShiV8hzONfllAKVSXGK_exH_4q96LDP_vX-PGH3H6_vrj6Xt18_3Vxd3pZOA0ylklC3iktFajrwHlE2CB5qB841rUHfGo0r5Q06pdpaOqk7qFqu6LLTrjphF7u6j3M7-JXz45Swt48pDJh-2ojB_v0yho1dxycrqDMXlP9-n5_i99nnyQ4hO9_3OPo4Z1tXFYAxUhF59l9SANSaxiDw7T_gQ5zTSFuwkitTKSMrgtQOop3mnHx3kCy43bprL6-_WA1WWHLXkrt26y7lvflz3t9ZezsJeLcHMDvsu4SjC_nASQGVVpywYodtwnrzIyRvMQ-WftShJyGnO6TDaHGdqMr9NxJR85pvpfwCx4PCfQ</recordid><startdate>199801</startdate><enddate>199801</enddate><creator>Vorbeck, C</creator><creator>Lenke, H</creator><creator>Fischer, P</creator><creator>Spain, J.C</creator><creator>Knackmuss, H.J</creator><general>American Society for Microbiology</general><scope>FBQ</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>199801</creationdate><title>Initial reductive reactions in aerobic microbial metabolism of 2,4,6-trinitrotoluene</title><author>Vorbeck, C ; Lenke, H ; Fischer, P ; Spain, J.C ; Knackmuss, H.J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c644t-5247b5025634f4eeaa28a4e47c4cc8b9aeb96ad5e9ac55b72c26f43b05ad5f6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Bacteria</topic><topic>BIODEGRADACION</topic><topic>BIODEGRADATION</topic><topic>Biological and medical sciences</topic><topic>Biology of microorganisms of confirmed or potential industrial interest</topic><topic>Biotechnology</topic><topic>COMPOSE ORGANOAZOTE</topic><topic>COMPUESTO ORGANICO DEL NITROGENO</topic><topic>Environmental and Public Health Microbiology</topic><topic>Explosives</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Metabolism</topic><topic>MICROBIAL DEGRADATION</topic><topic>Microbiology</topic><topic>Mission oriented research</topic><topic>ORGANIC NITROGEN COMPOUNDS</topic><topic>Physiology and metabolism</topic><topic>PSEUDOMONAS</topic><topic>REDUCCION</topic><topic>REDUCTION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vorbeck, C</creatorcontrib><creatorcontrib>Lenke, H</creatorcontrib><creatorcontrib>Fischer, P</creatorcontrib><creatorcontrib>Spain, J.C</creatorcontrib><creatorcontrib>Knackmuss, H.J</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vorbeck, C</au><au>Lenke, H</au><au>Fischer, P</au><au>Spain, J.C</au><au>Knackmuss, H.J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Initial reductive reactions in aerobic microbial metabolism of 2,4,6-trinitrotoluene</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>1998-01</date><risdate>1998</risdate><volume>64</volume><issue>1</issue><spage>246</spage><epage>252</epage><pages>246-252</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><coden>AEMIDF</coden><abstract>Because of its high electron deficiency, initial microbial transformations of 2,4,6-trinitrotoluene (TNT) are characterized by reductive rather than oxidation reactions. The reduction of the nitro groups seems to be the dominating mechanism, whereas hydrogenation of the aromatic ring, as described for picric acid, appears to be of minor importance. Thus, two bacterial strains enriched with TNT as a sole source of nitrogen under aerobic conditions, a gram-negative strain called TNT-8 and a gram-positive strain called TNT-32, carried out nitro-group reduction. In contrast, both a picric acid-utilizing Rhodococcus erythropolis strain, HL PM-1, and a 4-nitrotoluene-utilizing Mycobacterium sp. strain, HL 4-NT-1 possessed reductive enzyme systems, which catalyze ring hydrogenation, i.e., the addition of a hydride ion to the aromatic ring of TNT. The hydride-Meisenheimer complex thus formed (H(-)-TNT) was further converted to a yellow metabolite, which by electrospray mass and nuclear magnetic resonance spectral analyses was established as the protonated dihydride-Meisenheimer complex of TNT (2H(-)-TNT). Formation of hydride complexes could not be identified with the TNT-enriched strains TNT-8 and TNT-32, or with Pseudomonas sp. clone A (2NT-), for which such a mechanism has been proposed. Correspondingly, reductive denitration of TNT did not occur</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>16349484</pmid><doi>10.1128/aem.64.1.246-252.1998</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0099-2240 |
ispartof | Applied and Environmental Microbiology, 1998-01, Vol.64 (1), p.246-252 |
issn | 0099-2240 1098-5336 |
language | eng |
recordid | cdi_proquest_journals_205935923 |
source | American Society for Microbiology; PubMed Central; Alma/SFX Local Collection |
subjects | Bacteria BIODEGRADACION BIODEGRADATION Biological and medical sciences Biology of microorganisms of confirmed or potential industrial interest Biotechnology COMPOSE ORGANOAZOTE COMPUESTO ORGANICO DEL NITROGENO Environmental and Public Health Microbiology Explosives Fundamental and applied biological sciences. Psychology Metabolism MICROBIAL DEGRADATION Microbiology Mission oriented research ORGANIC NITROGEN COMPOUNDS Physiology and metabolism PSEUDOMONAS REDUCCION REDUCTION |
title | Initial reductive reactions in aerobic microbial metabolism of 2,4,6-trinitrotoluene |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A46%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Initial%20reductive%20reactions%20in%20aerobic%20microbial%20metabolism%20of%202,4,6-trinitrotoluene&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=Vorbeck,%20C&rft.date=1998-01&rft.volume=64&rft.issue=1&rft.spage=246&rft.epage=252&rft.pages=246-252&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/aem.64.1.246-252.1998&rft_dat=%3Cproquest_pasca%3E26932190%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205935923&rft_id=info:pmid/16349484&rfr_iscdi=true |