Initial reductive reactions in aerobic microbial metabolism of 2,4,6-trinitrotoluene

Because of its high electron deficiency, initial microbial transformations of 2,4,6-trinitrotoluene (TNT) are characterized by reductive rather than oxidation reactions. The reduction of the nitro groups seems to be the dominating mechanism, whereas hydrogenation of the aromatic ring, as described f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and Environmental Microbiology 1998-01, Vol.64 (1), p.246-252
Hauptverfasser: Vorbeck, C, Lenke, H, Fischer, P, Spain, J.C, Knackmuss, H.J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 252
container_issue 1
container_start_page 246
container_title Applied and Environmental Microbiology
container_volume 64
creator Vorbeck, C
Lenke, H
Fischer, P
Spain, J.C
Knackmuss, H.J
description Because of its high electron deficiency, initial microbial transformations of 2,4,6-trinitrotoluene (TNT) are characterized by reductive rather than oxidation reactions. The reduction of the nitro groups seems to be the dominating mechanism, whereas hydrogenation of the aromatic ring, as described for picric acid, appears to be of minor importance. Thus, two bacterial strains enriched with TNT as a sole source of nitrogen under aerobic conditions, a gram-negative strain called TNT-8 and a gram-positive strain called TNT-32, carried out nitro-group reduction. In contrast, both a picric acid-utilizing Rhodococcus erythropolis strain, HL PM-1, and a 4-nitrotoluene-utilizing Mycobacterium sp. strain, HL 4-NT-1 possessed reductive enzyme systems, which catalyze ring hydrogenation, i.e., the addition of a hydride ion to the aromatic ring of TNT. The hydride-Meisenheimer complex thus formed (H(-)-TNT) was further converted to a yellow metabolite, which by electrospray mass and nuclear magnetic resonance spectral analyses was established as the protonated dihydride-Meisenheimer complex of TNT (2H(-)-TNT). Formation of hydride complexes could not be identified with the TNT-enriched strains TNT-8 and TNT-32, or with Pseudomonas sp. clone A (2NT-), for which such a mechanism has been proposed. Correspondingly, reductive denitration of TNT did not occur
doi_str_mv 10.1128/aem.64.1.246-252.1998
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_journals_205935923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26932190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c644t-5247b5025634f4eeaa28a4e47c4cc8b9aeb96ad5e9ac55b72c26f43b05ad5f6c3</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhi0EotvCTyiKECqXZrGdsRMfeqiqApWKONCerYnX2XWVxMVOivj3zGpXy8eBk0f2MzPvzGvGTgVfCiGbD-iHpYalWErQpVRyKYxpnrGF4KYpVVXp52zBuTGllMCP2HHOD5xz4Lp5yY6ErsBAAwt2dzOGKWBfJL-a3RSePEVIQRxzEcYCfYptcMUQ3DYgcPATtrEPeShiV8hzONfllAKVSXGK_exH_4q96LDP_vX-PGH3H6_vrj6Xt18_3Vxd3pZOA0ylklC3iktFajrwHlE2CB5qB841rUHfGo0r5Q06pdpaOqk7qFqu6LLTrjphF7u6j3M7-JXz45Swt48pDJh-2ojB_v0yho1dxycrqDMXlP9-n5_i99nnyQ4hO9_3OPo4Z1tXFYAxUhF59l9SANSaxiDw7T_gQ5zTSFuwkitTKSMrgtQOop3mnHx3kCy43bprL6-_WA1WWHLXkrt26y7lvflz3t9ZezsJeLcHMDvsu4SjC_nASQGVVpywYodtwnrzIyRvMQ-WftShJyGnO6TDaHGdqMr9NxJR85pvpfwCx4PCfQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205935923</pqid></control><display><type>article</type><title>Initial reductive reactions in aerobic microbial metabolism of 2,4,6-trinitrotoluene</title><source>American Society for Microbiology</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Vorbeck, C ; Lenke, H ; Fischer, P ; Spain, J.C ; Knackmuss, H.J</creator><creatorcontrib>Vorbeck, C ; Lenke, H ; Fischer, P ; Spain, J.C ; Knackmuss, H.J</creatorcontrib><description>Because of its high electron deficiency, initial microbial transformations of 2,4,6-trinitrotoluene (TNT) are characterized by reductive rather than oxidation reactions. The reduction of the nitro groups seems to be the dominating mechanism, whereas hydrogenation of the aromatic ring, as described for picric acid, appears to be of minor importance. Thus, two bacterial strains enriched with TNT as a sole source of nitrogen under aerobic conditions, a gram-negative strain called TNT-8 and a gram-positive strain called TNT-32, carried out nitro-group reduction. In contrast, both a picric acid-utilizing Rhodococcus erythropolis strain, HL PM-1, and a 4-nitrotoluene-utilizing Mycobacterium sp. strain, HL 4-NT-1 possessed reductive enzyme systems, which catalyze ring hydrogenation, i.e., the addition of a hydride ion to the aromatic ring of TNT. The hydride-Meisenheimer complex thus formed (H(-)-TNT) was further converted to a yellow metabolite, which by electrospray mass and nuclear magnetic resonance spectral analyses was established as the protonated dihydride-Meisenheimer complex of TNT (2H(-)-TNT). Formation of hydride complexes could not be identified with the TNT-enriched strains TNT-8 and TNT-32, or with Pseudomonas sp. clone A (2NT-), for which such a mechanism has been proposed. Correspondingly, reductive denitration of TNT did not occur</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>DOI: 10.1128/aem.64.1.246-252.1998</identifier><identifier>PMID: 16349484</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>Bacteria ; BIODEGRADACION ; BIODEGRADATION ; Biological and medical sciences ; Biology of microorganisms of confirmed or potential industrial interest ; Biotechnology ; COMPOSE ORGANOAZOTE ; COMPUESTO ORGANICO DEL NITROGENO ; Environmental and Public Health Microbiology ; Explosives ; Fundamental and applied biological sciences. Psychology ; Metabolism ; MICROBIAL DEGRADATION ; Microbiology ; Mission oriented research ; ORGANIC NITROGEN COMPOUNDS ; Physiology and metabolism ; PSEUDOMONAS ; REDUCCION ; REDUCTION</subject><ispartof>Applied and Environmental Microbiology, 1998-01, Vol.64 (1), p.246-252</ispartof><rights>1998 INIST-CNRS</rights><rights>Copyright American Society for Microbiology Jan 1998</rights><rights>Copyright © 1998, American Society for Microbiology 1998</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c644t-5247b5025634f4eeaa28a4e47c4cc8b9aeb96ad5e9ac55b72c26f43b05ad5f6c3</citedby><cites>FETCH-LOGICAL-c644t-5247b5025634f4eeaa28a4e47c4cc8b9aeb96ad5e9ac55b72c26f43b05ad5f6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC124701/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC124701/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,3188,3189,4024,27923,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2143650$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16349484$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vorbeck, C</creatorcontrib><creatorcontrib>Lenke, H</creatorcontrib><creatorcontrib>Fischer, P</creatorcontrib><creatorcontrib>Spain, J.C</creatorcontrib><creatorcontrib>Knackmuss, H.J</creatorcontrib><title>Initial reductive reactions in aerobic microbial metabolism of 2,4,6-trinitrotoluene</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>Because of its high electron deficiency, initial microbial transformations of 2,4,6-trinitrotoluene (TNT) are characterized by reductive rather than oxidation reactions. The reduction of the nitro groups seems to be the dominating mechanism, whereas hydrogenation of the aromatic ring, as described for picric acid, appears to be of minor importance. Thus, two bacterial strains enriched with TNT as a sole source of nitrogen under aerobic conditions, a gram-negative strain called TNT-8 and a gram-positive strain called TNT-32, carried out nitro-group reduction. In contrast, both a picric acid-utilizing Rhodococcus erythropolis strain, HL PM-1, and a 4-nitrotoluene-utilizing Mycobacterium sp. strain, HL 4-NT-1 possessed reductive enzyme systems, which catalyze ring hydrogenation, i.e., the addition of a hydride ion to the aromatic ring of TNT. The hydride-Meisenheimer complex thus formed (H(-)-TNT) was further converted to a yellow metabolite, which by electrospray mass and nuclear magnetic resonance spectral analyses was established as the protonated dihydride-Meisenheimer complex of TNT (2H(-)-TNT). Formation of hydride complexes could not be identified with the TNT-enriched strains TNT-8 and TNT-32, or with Pseudomonas sp. clone A (2NT-), for which such a mechanism has been proposed. Correspondingly, reductive denitration of TNT did not occur</description><subject>Bacteria</subject><subject>BIODEGRADACION</subject><subject>BIODEGRADATION</subject><subject>Biological and medical sciences</subject><subject>Biology of microorganisms of confirmed or potential industrial interest</subject><subject>Biotechnology</subject><subject>COMPOSE ORGANOAZOTE</subject><subject>COMPUESTO ORGANICO DEL NITROGENO</subject><subject>Environmental and Public Health Microbiology</subject><subject>Explosives</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Metabolism</subject><subject>MICROBIAL DEGRADATION</subject><subject>Microbiology</subject><subject>Mission oriented research</subject><subject>ORGANIC NITROGEN COMPOUNDS</subject><subject>Physiology and metabolism</subject><subject>PSEUDOMONAS</subject><subject>REDUCCION</subject><subject>REDUCTION</subject><issn>0099-2240</issn><issn>1098-5336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNp9kk1v1DAQhi0EotvCTyiKECqXZrGdsRMfeqiqApWKONCerYnX2XWVxMVOivj3zGpXy8eBk0f2MzPvzGvGTgVfCiGbD-iHpYalWErQpVRyKYxpnrGF4KYpVVXp52zBuTGllMCP2HHOD5xz4Lp5yY6ErsBAAwt2dzOGKWBfJL-a3RSePEVIQRxzEcYCfYptcMUQ3DYgcPATtrEPeShiV8hzONfllAKVSXGK_exH_4q96LDP_vX-PGH3H6_vrj6Xt18_3Vxd3pZOA0ylklC3iktFajrwHlE2CB5qB841rUHfGo0r5Q06pdpaOqk7qFqu6LLTrjphF7u6j3M7-JXz45Swt48pDJh-2ojB_v0yho1dxycrqDMXlP9-n5_i99nnyQ4hO9_3OPo4Z1tXFYAxUhF59l9SANSaxiDw7T_gQ5zTSFuwkitTKSMrgtQOop3mnHx3kCy43bprL6-_WA1WWHLXkrt26y7lvflz3t9ZezsJeLcHMDvsu4SjC_nASQGVVpywYodtwnrzIyRvMQ-WftShJyGnO6TDaHGdqMr9NxJR85pvpfwCx4PCfQ</recordid><startdate>199801</startdate><enddate>199801</enddate><creator>Vorbeck, C</creator><creator>Lenke, H</creator><creator>Fischer, P</creator><creator>Spain, J.C</creator><creator>Knackmuss, H.J</creator><general>American Society for Microbiology</general><scope>FBQ</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>199801</creationdate><title>Initial reductive reactions in aerobic microbial metabolism of 2,4,6-trinitrotoluene</title><author>Vorbeck, C ; Lenke, H ; Fischer, P ; Spain, J.C ; Knackmuss, H.J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c644t-5247b5025634f4eeaa28a4e47c4cc8b9aeb96ad5e9ac55b72c26f43b05ad5f6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Bacteria</topic><topic>BIODEGRADACION</topic><topic>BIODEGRADATION</topic><topic>Biological and medical sciences</topic><topic>Biology of microorganisms of confirmed or potential industrial interest</topic><topic>Biotechnology</topic><topic>COMPOSE ORGANOAZOTE</topic><topic>COMPUESTO ORGANICO DEL NITROGENO</topic><topic>Environmental and Public Health Microbiology</topic><topic>Explosives</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Metabolism</topic><topic>MICROBIAL DEGRADATION</topic><topic>Microbiology</topic><topic>Mission oriented research</topic><topic>ORGANIC NITROGEN COMPOUNDS</topic><topic>Physiology and metabolism</topic><topic>PSEUDOMONAS</topic><topic>REDUCCION</topic><topic>REDUCTION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vorbeck, C</creatorcontrib><creatorcontrib>Lenke, H</creatorcontrib><creatorcontrib>Fischer, P</creatorcontrib><creatorcontrib>Spain, J.C</creatorcontrib><creatorcontrib>Knackmuss, H.J</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vorbeck, C</au><au>Lenke, H</au><au>Fischer, P</au><au>Spain, J.C</au><au>Knackmuss, H.J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Initial reductive reactions in aerobic microbial metabolism of 2,4,6-trinitrotoluene</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>1998-01</date><risdate>1998</risdate><volume>64</volume><issue>1</issue><spage>246</spage><epage>252</epage><pages>246-252</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><coden>AEMIDF</coden><abstract>Because of its high electron deficiency, initial microbial transformations of 2,4,6-trinitrotoluene (TNT) are characterized by reductive rather than oxidation reactions. The reduction of the nitro groups seems to be the dominating mechanism, whereas hydrogenation of the aromatic ring, as described for picric acid, appears to be of minor importance. Thus, two bacterial strains enriched with TNT as a sole source of nitrogen under aerobic conditions, a gram-negative strain called TNT-8 and a gram-positive strain called TNT-32, carried out nitro-group reduction. In contrast, both a picric acid-utilizing Rhodococcus erythropolis strain, HL PM-1, and a 4-nitrotoluene-utilizing Mycobacterium sp. strain, HL 4-NT-1 possessed reductive enzyme systems, which catalyze ring hydrogenation, i.e., the addition of a hydride ion to the aromatic ring of TNT. The hydride-Meisenheimer complex thus formed (H(-)-TNT) was further converted to a yellow metabolite, which by electrospray mass and nuclear magnetic resonance spectral analyses was established as the protonated dihydride-Meisenheimer complex of TNT (2H(-)-TNT). Formation of hydride complexes could not be identified with the TNT-enriched strains TNT-8 and TNT-32, or with Pseudomonas sp. clone A (2NT-), for which such a mechanism has been proposed. Correspondingly, reductive denitration of TNT did not occur</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>16349484</pmid><doi>10.1128/aem.64.1.246-252.1998</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0099-2240
ispartof Applied and Environmental Microbiology, 1998-01, Vol.64 (1), p.246-252
issn 0099-2240
1098-5336
language eng
recordid cdi_proquest_journals_205935923
source American Society for Microbiology; PubMed Central; Alma/SFX Local Collection
subjects Bacteria
BIODEGRADACION
BIODEGRADATION
Biological and medical sciences
Biology of microorganisms of confirmed or potential industrial interest
Biotechnology
COMPOSE ORGANOAZOTE
COMPUESTO ORGANICO DEL NITROGENO
Environmental and Public Health Microbiology
Explosives
Fundamental and applied biological sciences. Psychology
Metabolism
MICROBIAL DEGRADATION
Microbiology
Mission oriented research
ORGANIC NITROGEN COMPOUNDS
Physiology and metabolism
PSEUDOMONAS
REDUCCION
REDUCTION
title Initial reductive reactions in aerobic microbial metabolism of 2,4,6-trinitrotoluene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A46%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Initial%20reductive%20reactions%20in%20aerobic%20microbial%20metabolism%20of%202,4,6-trinitrotoluene&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=Vorbeck,%20C&rft.date=1998-01&rft.volume=64&rft.issue=1&rft.spage=246&rft.epage=252&rft.pages=246-252&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/aem.64.1.246-252.1998&rft_dat=%3Cproquest_pasca%3E26932190%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205935923&rft_id=info:pmid/16349484&rfr_iscdi=true