Physiology and metabolic fluxes of wild-type and riboflavin-producing Bacillus subtilis
Continuous cultivation in a glucose-limited chemostat was used to determine the growth parameters of wildtype Bacillus subtilis and of a recombinant, riboflavin-producing strain. Maintenance coefficients of 0.45 and 0.66 mmol of glucose g-1 h-1 were determined for the wild-type and recombinant strai...
Gespeichert in:
Veröffentlicht in: | Applied and Environmental Microbiology 1996-10, Vol.62 (10), p.3687-3696 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3696 |
---|---|
container_issue | 10 |
container_start_page | 3687 |
container_title | Applied and Environmental Microbiology |
container_volume | 62 |
creator | Sauer, U. (Eidgenossische Technische Hochschule Zurich, Zurich, Switzerland.) Hatzimanikatis, V Hohmann, H.P Manneberg, M Loon, A.P.G.M. van Bailey, J.E |
description | Continuous cultivation in a glucose-limited chemostat was used to determine the growth parameters of wildtype Bacillus subtilis and of a recombinant, riboflavin-producing strain. Maintenance coefficients of 0.45 and 0.66 mmol of glucose g-1 h-1 were determined for the wild-type and recombinant strains, respectively. However, the maximum molar growth yield of 82 to 85 g (cell dry weight)/mol of glucose was found to be almost identical in both strains. A nonlinear relationship between the specific riboflavin production rate and the dilution rate was observed, revealing a coupling of product formation and growth under strict substrate-limited conditions. Most prominently, riboflavin formation completely ceased at specific growth rates below 0.15 h-1. For molecular characterization of B. subtilis, the total amino acid composition of the wild type was experimentally determined and the complete building block requirements for biomass formation were derived. In particular, the murein sacculus was found to constitute approximately 9% of B. subtilis biomass, three- to fivefold more than in Escherichia coli. Estimation of intracellular metabolic fluxes by a refined mass balance approach revealed a substantial, growth rate-dependent flux through the oxidative branch of the pentose phosphate pathway. Furthermore, this flux is indicated to be increased in the strain engineered for riboflavin formation. Glucose catabolism at low growth rates with reduced biomass yields was supported mainly by the tricarboxylic acid cycle |
doi_str_mv | 10.1128/aem.62.10.3687-3696.1996 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_205934418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>15755516</sourcerecordid><originalsourceid>FETCH-LOGICAL-c668t-89aa1a6da647d338571003a63c97382c896ce10210dd4a7f917d0c8ac15a5f43</originalsourceid><addsrcrecordid>eNqFkkuLFDEUhYMoYzv6BwShEHFXbV6Vx8KFDr5gQMERl-F2KlWdIVVpk6oZ-9-bsptWZ-MqXO53bs7NCUIVwWtCqHoFblgLui4lE0rWTGixJlqLe2hFsFZ1w5i4j1YYa11TyvFD9Cjna4wxx0KdoTOlmOSUr9D3L9t99jHEfl_B2FaDm2ATg7dVF-afLlexq259aOtpv3O_ieQ3sQtw48d6l2I7Wz_21VuwPoQ5V3neTD74_Bg96CBk9-R4nqOr9--uLj7Wl58_fLp4c1lbIdRUKw1AQLQguGwZU40kGDMQzGrJFLVKC-sIpgS3LQfZaSJbbBVY0kDTcXaOXh_G7ubN4FrrxilBMLvkB0h7E8Gbfzuj35o-3hgiFJGy6F8e9Sn-mF2ezOCzdSHA6OKcjVTFU0Pof0HSyKaAooDP74DXcU5jeQNDcaMZ50QVSB0gm2LOyXUnxwSbJWBTAjaCLuUSsFkCNkvARfrs741PwmOipf_i2IdsIXQJRuvzCaNclv-g_9jc-n5765MzkIc7txbo6QHqIBroU5nz7auWmDZKs1_Lm8PP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205934418</pqid></control><display><type>article</type><title>Physiology and metabolic fluxes of wild-type and riboflavin-producing Bacillus subtilis</title><source>MEDLINE</source><source>American Society for Microbiology Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Sauer, U. (Eidgenossische Technische Hochschule Zurich, Zurich, Switzerland.) ; Hatzimanikatis, V ; Hohmann, H.P ; Manneberg, M ; Loon, A.P.G.M. van ; Bailey, J.E</creator><creatorcontrib>Sauer, U. (Eidgenossische Technische Hochschule Zurich, Zurich, Switzerland.) ; Hatzimanikatis, V ; Hohmann, H.P ; Manneberg, M ; Loon, A.P.G.M. van ; Bailey, J.E</creatorcontrib><description>Continuous cultivation in a glucose-limited chemostat was used to determine the growth parameters of wildtype Bacillus subtilis and of a recombinant, riboflavin-producing strain. Maintenance coefficients of 0.45 and 0.66 mmol of glucose g-1 h-1 were determined for the wild-type and recombinant strains, respectively. However, the maximum molar growth yield of 82 to 85 g (cell dry weight)/mol of glucose was found to be almost identical in both strains. A nonlinear relationship between the specific riboflavin production rate and the dilution rate was observed, revealing a coupling of product formation and growth under strict substrate-limited conditions. Most prominently, riboflavin formation completely ceased at specific growth rates below 0.15 h-1. For molecular characterization of B. subtilis, the total amino acid composition of the wild type was experimentally determined and the complete building block requirements for biomass formation were derived. In particular, the murein sacculus was found to constitute approximately 9% of B. subtilis biomass, three- to fivefold more than in Escherichia coli. Estimation of intracellular metabolic fluxes by a refined mass balance approach revealed a substantial, growth rate-dependent flux through the oxidative branch of the pentose phosphate pathway. Furthermore, this flux is indicated to be increased in the strain engineered for riboflavin formation. Glucose catabolism at low growth rates with reduced biomass yields was supported mainly by the tricarboxylic acid cycle</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>DOI: 10.1128/aem.62.10.3687-3696.1996</identifier><identifier>PMID: 8837424</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>ACIDE AMINE ; ADN RECOMBINADO ; ADN RECOMBINE ; Amino Acids - analysis ; AMINOACIDOS ; BACILLUS SUBTILIS ; Bacillus subtilis - growth & development ; Bacillus subtilis - metabolism ; Bacteria ; Biological and medical sciences ; Biology of microorganisms of confirmed or potential industrial interest ; Biomass ; BIOSINTESIS ; BIOSYNTHESE ; Biotechnology ; COMPOSICION QUIMICA ; COMPOSITION CHIMIQUE ; CONSOMMATION D'OXYGENE ; CONSUMO DE OXIGENO ; CULTIVO DE CELULAS ; CULTURE DE CELLULE ; DIOXIDO DE CARBONO ; DIOXYDE DE CARBONE ; Enzymes ; Escherichia coli - growth & development ; Escherichia coli - metabolism ; Fundamental and applied biological sciences. Psychology ; GASES ; GAZ ; GENE ; GENES ; GLUCOSA ; GLUCOSE ; Glucose - pharmacology ; INDICE DE CRECIMIENTO ; Metabolism ; METABOLISME ; METABOLISME DES GLUCIDES ; METABOLISMO ; METABOLISMO DE CARBOHIDRATOS ; Microbiology ; Mission oriented research ; Models, Chemical ; Peptidoglycan - analysis ; Physiology and metabolism ; POLISACARIDOS ; POLYHOLOSIDE ; RENDEMENT ; RENDIMIENTO ; Riboflavin - biosynthesis ; RIBOFLAVINA ; RIBOFLAVINE ; TAUX DE CROISSANCE ; TRANSFERENCIA DE GENES ; TRANSFERT DE GENE ; TRANSFORMACION GENETICA ; TRANSFORMATION GENETIQUE</subject><ispartof>Applied and Environmental Microbiology, 1996-10, Vol.62 (10), p.3687-3696</ispartof><rights>1997 INIST-CNRS</rights><rights>Copyright American Society for Microbiology Oct 1996</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c668t-89aa1a6da647d338571003a63c97382c896ce10210dd4a7f917d0c8ac15a5f43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC168177/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC168177/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,3175,3176,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2472249$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8837424$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sauer, U. (Eidgenossische Technische Hochschule Zurich, Zurich, Switzerland.)</creatorcontrib><creatorcontrib>Hatzimanikatis, V</creatorcontrib><creatorcontrib>Hohmann, H.P</creatorcontrib><creatorcontrib>Manneberg, M</creatorcontrib><creatorcontrib>Loon, A.P.G.M. van</creatorcontrib><creatorcontrib>Bailey, J.E</creatorcontrib><title>Physiology and metabolic fluxes of wild-type and riboflavin-producing Bacillus subtilis</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>Continuous cultivation in a glucose-limited chemostat was used to determine the growth parameters of wildtype Bacillus subtilis and of a recombinant, riboflavin-producing strain. Maintenance coefficients of 0.45 and 0.66 mmol of glucose g-1 h-1 were determined for the wild-type and recombinant strains, respectively. However, the maximum molar growth yield of 82 to 85 g (cell dry weight)/mol of glucose was found to be almost identical in both strains. A nonlinear relationship between the specific riboflavin production rate and the dilution rate was observed, revealing a coupling of product formation and growth under strict substrate-limited conditions. Most prominently, riboflavin formation completely ceased at specific growth rates below 0.15 h-1. For molecular characterization of B. subtilis, the total amino acid composition of the wild type was experimentally determined and the complete building block requirements for biomass formation were derived. In particular, the murein sacculus was found to constitute approximately 9% of B. subtilis biomass, three- to fivefold more than in Escherichia coli. Estimation of intracellular metabolic fluxes by a refined mass balance approach revealed a substantial, growth rate-dependent flux through the oxidative branch of the pentose phosphate pathway. Furthermore, this flux is indicated to be increased in the strain engineered for riboflavin formation. Glucose catabolism at low growth rates with reduced biomass yields was supported mainly by the tricarboxylic acid cycle</description><subject>ACIDE AMINE</subject><subject>ADN RECOMBINADO</subject><subject>ADN RECOMBINE</subject><subject>Amino Acids - analysis</subject><subject>AMINOACIDOS</subject><subject>BACILLUS SUBTILIS</subject><subject>Bacillus subtilis - growth & development</subject><subject>Bacillus subtilis - metabolism</subject><subject>Bacteria</subject><subject>Biological and medical sciences</subject><subject>Biology of microorganisms of confirmed or potential industrial interest</subject><subject>Biomass</subject><subject>BIOSINTESIS</subject><subject>BIOSYNTHESE</subject><subject>Biotechnology</subject><subject>COMPOSICION QUIMICA</subject><subject>COMPOSITION CHIMIQUE</subject><subject>CONSOMMATION D'OXYGENE</subject><subject>CONSUMO DE OXIGENO</subject><subject>CULTIVO DE CELULAS</subject><subject>CULTURE DE CELLULE</subject><subject>DIOXIDO DE CARBONO</subject><subject>DIOXYDE DE CARBONE</subject><subject>Enzymes</subject><subject>Escherichia coli - growth & development</subject><subject>Escherichia coli - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>GASES</subject><subject>GAZ</subject><subject>GENE</subject><subject>GENES</subject><subject>GLUCOSA</subject><subject>GLUCOSE</subject><subject>Glucose - pharmacology</subject><subject>INDICE DE CRECIMIENTO</subject><subject>Metabolism</subject><subject>METABOLISME</subject><subject>METABOLISME DES GLUCIDES</subject><subject>METABOLISMO</subject><subject>METABOLISMO DE CARBOHIDRATOS</subject><subject>Microbiology</subject><subject>Mission oriented research</subject><subject>Models, Chemical</subject><subject>Peptidoglycan - analysis</subject><subject>Physiology and metabolism</subject><subject>POLISACARIDOS</subject><subject>POLYHOLOSIDE</subject><subject>RENDEMENT</subject><subject>RENDIMIENTO</subject><subject>Riboflavin - biosynthesis</subject><subject>RIBOFLAVINA</subject><subject>RIBOFLAVINE</subject><subject>TAUX DE CROISSANCE</subject><subject>TRANSFERENCIA DE GENES</subject><subject>TRANSFERT DE GENE</subject><subject>TRANSFORMACION GENETICA</subject><subject>TRANSFORMATION GENETIQUE</subject><issn>0099-2240</issn><issn>1098-5336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkkuLFDEUhYMoYzv6BwShEHFXbV6Vx8KFDr5gQMERl-F2KlWdIVVpk6oZ-9-bsptWZ-MqXO53bs7NCUIVwWtCqHoFblgLui4lE0rWTGixJlqLe2hFsFZ1w5i4j1YYa11TyvFD9Cjna4wxx0KdoTOlmOSUr9D3L9t99jHEfl_B2FaDm2ATg7dVF-afLlexq259aOtpv3O_ieQ3sQtw48d6l2I7Wz_21VuwPoQ5V3neTD74_Bg96CBk9-R4nqOr9--uLj7Wl58_fLp4c1lbIdRUKw1AQLQguGwZU40kGDMQzGrJFLVKC-sIpgS3LQfZaSJbbBVY0kDTcXaOXh_G7ubN4FrrxilBMLvkB0h7E8Gbfzuj35o-3hgiFJGy6F8e9Sn-mF2ezOCzdSHA6OKcjVTFU0Pof0HSyKaAooDP74DXcU5jeQNDcaMZ50QVSB0gm2LOyXUnxwSbJWBTAjaCLuUSsFkCNkvARfrs741PwmOipf_i2IdsIXQJRuvzCaNclv-g_9jc-n5765MzkIc7txbo6QHqIBroU5nz7auWmDZKs1_Lm8PP</recordid><startdate>19961001</startdate><enddate>19961001</enddate><creator>Sauer, U. (Eidgenossische Technische Hochschule Zurich, Zurich, Switzerland.)</creator><creator>Hatzimanikatis, V</creator><creator>Hohmann, H.P</creator><creator>Manneberg, M</creator><creator>Loon, A.P.G.M. van</creator><creator>Bailey, J.E</creator><general>American Society for Microbiology</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19961001</creationdate><title>Physiology and metabolic fluxes of wild-type and riboflavin-producing Bacillus subtilis</title><author>Sauer, U. (Eidgenossische Technische Hochschule Zurich, Zurich, Switzerland.) ; Hatzimanikatis, V ; Hohmann, H.P ; Manneberg, M ; Loon, A.P.G.M. van ; Bailey, J.E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c668t-89aa1a6da647d338571003a63c97382c896ce10210dd4a7f917d0c8ac15a5f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>ACIDE AMINE</topic><topic>ADN RECOMBINADO</topic><topic>ADN RECOMBINE</topic><topic>Amino Acids - analysis</topic><topic>AMINOACIDOS</topic><topic>BACILLUS SUBTILIS</topic><topic>Bacillus subtilis - growth & development</topic><topic>Bacillus subtilis - metabolism</topic><topic>Bacteria</topic><topic>Biological and medical sciences</topic><topic>Biology of microorganisms of confirmed or potential industrial interest</topic><topic>Biomass</topic><topic>BIOSINTESIS</topic><topic>BIOSYNTHESE</topic><topic>Biotechnology</topic><topic>COMPOSICION QUIMICA</topic><topic>COMPOSITION CHIMIQUE</topic><topic>CONSOMMATION D'OXYGENE</topic><topic>CONSUMO DE OXIGENO</topic><topic>CULTIVO DE CELULAS</topic><topic>CULTURE DE CELLULE</topic><topic>DIOXIDO DE CARBONO</topic><topic>DIOXYDE DE CARBONE</topic><topic>Enzymes</topic><topic>Escherichia coli - growth & development</topic><topic>Escherichia coli - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>GASES</topic><topic>GAZ</topic><topic>GENE</topic><topic>GENES</topic><topic>GLUCOSA</topic><topic>GLUCOSE</topic><topic>Glucose - pharmacology</topic><topic>INDICE DE CRECIMIENTO</topic><topic>Metabolism</topic><topic>METABOLISME</topic><topic>METABOLISME DES GLUCIDES</topic><topic>METABOLISMO</topic><topic>METABOLISMO DE CARBOHIDRATOS</topic><topic>Microbiology</topic><topic>Mission oriented research</topic><topic>Models, Chemical</topic><topic>Peptidoglycan - analysis</topic><topic>Physiology and metabolism</topic><topic>POLISACARIDOS</topic><topic>POLYHOLOSIDE</topic><topic>RENDEMENT</topic><topic>RENDIMIENTO</topic><topic>Riboflavin - biosynthesis</topic><topic>RIBOFLAVINA</topic><topic>RIBOFLAVINE</topic><topic>TAUX DE CROISSANCE</topic><topic>TRANSFERENCIA DE GENES</topic><topic>TRANSFERT DE GENE</topic><topic>TRANSFORMACION GENETICA</topic><topic>TRANSFORMATION GENETIQUE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sauer, U. (Eidgenossische Technische Hochschule Zurich, Zurich, Switzerland.)</creatorcontrib><creatorcontrib>Hatzimanikatis, V</creatorcontrib><creatorcontrib>Hohmann, H.P</creatorcontrib><creatorcontrib>Manneberg, M</creatorcontrib><creatorcontrib>Loon, A.P.G.M. van</creatorcontrib><creatorcontrib>Bailey, J.E</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sauer, U. (Eidgenossische Technische Hochschule Zurich, Zurich, Switzerland.)</au><au>Hatzimanikatis, V</au><au>Hohmann, H.P</au><au>Manneberg, M</au><au>Loon, A.P.G.M. van</au><au>Bailey, J.E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physiology and metabolic fluxes of wild-type and riboflavin-producing Bacillus subtilis</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>1996-10-01</date><risdate>1996</risdate><volume>62</volume><issue>10</issue><spage>3687</spage><epage>3696</epage><pages>3687-3696</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><coden>AEMIDF</coden><abstract>Continuous cultivation in a glucose-limited chemostat was used to determine the growth parameters of wildtype Bacillus subtilis and of a recombinant, riboflavin-producing strain. Maintenance coefficients of 0.45 and 0.66 mmol of glucose g-1 h-1 were determined for the wild-type and recombinant strains, respectively. However, the maximum molar growth yield of 82 to 85 g (cell dry weight)/mol of glucose was found to be almost identical in both strains. A nonlinear relationship between the specific riboflavin production rate and the dilution rate was observed, revealing a coupling of product formation and growth under strict substrate-limited conditions. Most prominently, riboflavin formation completely ceased at specific growth rates below 0.15 h-1. For molecular characterization of B. subtilis, the total amino acid composition of the wild type was experimentally determined and the complete building block requirements for biomass formation were derived. In particular, the murein sacculus was found to constitute approximately 9% of B. subtilis biomass, three- to fivefold more than in Escherichia coli. Estimation of intracellular metabolic fluxes by a refined mass balance approach revealed a substantial, growth rate-dependent flux through the oxidative branch of the pentose phosphate pathway. Furthermore, this flux is indicated to be increased in the strain engineered for riboflavin formation. Glucose catabolism at low growth rates with reduced biomass yields was supported mainly by the tricarboxylic acid cycle</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>8837424</pmid><doi>10.1128/aem.62.10.3687-3696.1996</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0099-2240 |
ispartof | Applied and Environmental Microbiology, 1996-10, Vol.62 (10), p.3687-3696 |
issn | 0099-2240 1098-5336 |
language | eng |
recordid | cdi_proquest_journals_205934418 |
source | MEDLINE; American Society for Microbiology Journals; PubMed Central; Alma/SFX Local Collection |
subjects | ACIDE AMINE ADN RECOMBINADO ADN RECOMBINE Amino Acids - analysis AMINOACIDOS BACILLUS SUBTILIS Bacillus subtilis - growth & development Bacillus subtilis - metabolism Bacteria Biological and medical sciences Biology of microorganisms of confirmed or potential industrial interest Biomass BIOSINTESIS BIOSYNTHESE Biotechnology COMPOSICION QUIMICA COMPOSITION CHIMIQUE CONSOMMATION D'OXYGENE CONSUMO DE OXIGENO CULTIVO DE CELULAS CULTURE DE CELLULE DIOXIDO DE CARBONO DIOXYDE DE CARBONE Enzymes Escherichia coli - growth & development Escherichia coli - metabolism Fundamental and applied biological sciences. Psychology GASES GAZ GENE GENES GLUCOSA GLUCOSE Glucose - pharmacology INDICE DE CRECIMIENTO Metabolism METABOLISME METABOLISME DES GLUCIDES METABOLISMO METABOLISMO DE CARBOHIDRATOS Microbiology Mission oriented research Models, Chemical Peptidoglycan - analysis Physiology and metabolism POLISACARIDOS POLYHOLOSIDE RENDEMENT RENDIMIENTO Riboflavin - biosynthesis RIBOFLAVINA RIBOFLAVINE TAUX DE CROISSANCE TRANSFERENCIA DE GENES TRANSFERT DE GENE TRANSFORMACION GENETICA TRANSFORMATION GENETIQUE |
title | Physiology and metabolic fluxes of wild-type and riboflavin-producing Bacillus subtilis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T18%3A18%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physiology%20and%20metabolic%20fluxes%20of%20wild-type%20and%20riboflavin-producing%20Bacillus%20subtilis&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=Sauer,%20U.%20(Eidgenossische%20Technische%20Hochschule%20Zurich,%20Zurich,%20Switzerland.)&rft.date=1996-10-01&rft.volume=62&rft.issue=10&rft.spage=3687&rft.epage=3696&rft.pages=3687-3696&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/aem.62.10.3687-3696.1996&rft_dat=%3Cproquest_pubme%3E15755516%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205934418&rft_id=info:pmid/8837424&rfr_iscdi=true |