Physiology and metabolic fluxes of wild-type and riboflavin-producing Bacillus subtilis

Continuous cultivation in a glucose-limited chemostat was used to determine the growth parameters of wildtype Bacillus subtilis and of a recombinant, riboflavin-producing strain. Maintenance coefficients of 0.45 and 0.66 mmol of glucose g-1 h-1 were determined for the wild-type and recombinant strai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and Environmental Microbiology 1996-10, Vol.62 (10), p.3687-3696
Hauptverfasser: Sauer, U. (Eidgenossische Technische Hochschule Zurich, Zurich, Switzerland.), Hatzimanikatis, V, Hohmann, H.P, Manneberg, M, Loon, A.P.G.M. van, Bailey, J.E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3696
container_issue 10
container_start_page 3687
container_title Applied and Environmental Microbiology
container_volume 62
creator Sauer, U. (Eidgenossische Technische Hochschule Zurich, Zurich, Switzerland.)
Hatzimanikatis, V
Hohmann, H.P
Manneberg, M
Loon, A.P.G.M. van
Bailey, J.E
description Continuous cultivation in a glucose-limited chemostat was used to determine the growth parameters of wildtype Bacillus subtilis and of a recombinant, riboflavin-producing strain. Maintenance coefficients of 0.45 and 0.66 mmol of glucose g-1 h-1 were determined for the wild-type and recombinant strains, respectively. However, the maximum molar growth yield of 82 to 85 g (cell dry weight)/mol of glucose was found to be almost identical in both strains. A nonlinear relationship between the specific riboflavin production rate and the dilution rate was observed, revealing a coupling of product formation and growth under strict substrate-limited conditions. Most prominently, riboflavin formation completely ceased at specific growth rates below 0.15 h-1. For molecular characterization of B. subtilis, the total amino acid composition of the wild type was experimentally determined and the complete building block requirements for biomass formation were derived. In particular, the murein sacculus was found to constitute approximately 9% of B. subtilis biomass, three- to fivefold more than in Escherichia coli. Estimation of intracellular metabolic fluxes by a refined mass balance approach revealed a substantial, growth rate-dependent flux through the oxidative branch of the pentose phosphate pathway. Furthermore, this flux is indicated to be increased in the strain engineered for riboflavin formation. Glucose catabolism at low growth rates with reduced biomass yields was supported mainly by the tricarboxylic acid cycle
doi_str_mv 10.1128/aem.62.10.3687-3696.1996
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_205934418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>15755516</sourcerecordid><originalsourceid>FETCH-LOGICAL-c668t-89aa1a6da647d338571003a63c97382c896ce10210dd4a7f917d0c8ac15a5f43</originalsourceid><addsrcrecordid>eNqFkkuLFDEUhYMoYzv6BwShEHFXbV6Vx8KFDr5gQMERl-F2KlWdIVVpk6oZ-9-bsptWZ-MqXO53bs7NCUIVwWtCqHoFblgLui4lE0rWTGixJlqLe2hFsFZ1w5i4j1YYa11TyvFD9Cjna4wxx0KdoTOlmOSUr9D3L9t99jHEfl_B2FaDm2ATg7dVF-afLlexq259aOtpv3O_ieQ3sQtw48d6l2I7Wz_21VuwPoQ5V3neTD74_Bg96CBk9-R4nqOr9--uLj7Wl58_fLp4c1lbIdRUKw1AQLQguGwZU40kGDMQzGrJFLVKC-sIpgS3LQfZaSJbbBVY0kDTcXaOXh_G7ubN4FrrxilBMLvkB0h7E8Gbfzuj35o-3hgiFJGy6F8e9Sn-mF2ezOCzdSHA6OKcjVTFU0Pof0HSyKaAooDP74DXcU5jeQNDcaMZ50QVSB0gm2LOyXUnxwSbJWBTAjaCLuUSsFkCNkvARfrs741PwmOipf_i2IdsIXQJRuvzCaNclv-g_9jc-n5765MzkIc7txbo6QHqIBroU5nz7auWmDZKs1_Lm8PP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205934418</pqid></control><display><type>article</type><title>Physiology and metabolic fluxes of wild-type and riboflavin-producing Bacillus subtilis</title><source>MEDLINE</source><source>American Society for Microbiology Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Sauer, U. (Eidgenossische Technische Hochschule Zurich, Zurich, Switzerland.) ; Hatzimanikatis, V ; Hohmann, H.P ; Manneberg, M ; Loon, A.P.G.M. van ; Bailey, J.E</creator><creatorcontrib>Sauer, U. (Eidgenossische Technische Hochschule Zurich, Zurich, Switzerland.) ; Hatzimanikatis, V ; Hohmann, H.P ; Manneberg, M ; Loon, A.P.G.M. van ; Bailey, J.E</creatorcontrib><description>Continuous cultivation in a glucose-limited chemostat was used to determine the growth parameters of wildtype Bacillus subtilis and of a recombinant, riboflavin-producing strain. Maintenance coefficients of 0.45 and 0.66 mmol of glucose g-1 h-1 were determined for the wild-type and recombinant strains, respectively. However, the maximum molar growth yield of 82 to 85 g (cell dry weight)/mol of glucose was found to be almost identical in both strains. A nonlinear relationship between the specific riboflavin production rate and the dilution rate was observed, revealing a coupling of product formation and growth under strict substrate-limited conditions. Most prominently, riboflavin formation completely ceased at specific growth rates below 0.15 h-1. For molecular characterization of B. subtilis, the total amino acid composition of the wild type was experimentally determined and the complete building block requirements for biomass formation were derived. In particular, the murein sacculus was found to constitute approximately 9% of B. subtilis biomass, three- to fivefold more than in Escherichia coli. Estimation of intracellular metabolic fluxes by a refined mass balance approach revealed a substantial, growth rate-dependent flux through the oxidative branch of the pentose phosphate pathway. Furthermore, this flux is indicated to be increased in the strain engineered for riboflavin formation. Glucose catabolism at low growth rates with reduced biomass yields was supported mainly by the tricarboxylic acid cycle</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>DOI: 10.1128/aem.62.10.3687-3696.1996</identifier><identifier>PMID: 8837424</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>ACIDE AMINE ; ADN RECOMBINADO ; ADN RECOMBINE ; Amino Acids - analysis ; AMINOACIDOS ; BACILLUS SUBTILIS ; Bacillus subtilis - growth &amp; development ; Bacillus subtilis - metabolism ; Bacteria ; Biological and medical sciences ; Biology of microorganisms of confirmed or potential industrial interest ; Biomass ; BIOSINTESIS ; BIOSYNTHESE ; Biotechnology ; COMPOSICION QUIMICA ; COMPOSITION CHIMIQUE ; CONSOMMATION D'OXYGENE ; CONSUMO DE OXIGENO ; CULTIVO DE CELULAS ; CULTURE DE CELLULE ; DIOXIDO DE CARBONO ; DIOXYDE DE CARBONE ; Enzymes ; Escherichia coli - growth &amp; development ; Escherichia coli - metabolism ; Fundamental and applied biological sciences. Psychology ; GASES ; GAZ ; GENE ; GENES ; GLUCOSA ; GLUCOSE ; Glucose - pharmacology ; INDICE DE CRECIMIENTO ; Metabolism ; METABOLISME ; METABOLISME DES GLUCIDES ; METABOLISMO ; METABOLISMO DE CARBOHIDRATOS ; Microbiology ; Mission oriented research ; Models, Chemical ; Peptidoglycan - analysis ; Physiology and metabolism ; POLISACARIDOS ; POLYHOLOSIDE ; RENDEMENT ; RENDIMIENTO ; Riboflavin - biosynthesis ; RIBOFLAVINA ; RIBOFLAVINE ; TAUX DE CROISSANCE ; TRANSFERENCIA DE GENES ; TRANSFERT DE GENE ; TRANSFORMACION GENETICA ; TRANSFORMATION GENETIQUE</subject><ispartof>Applied and Environmental Microbiology, 1996-10, Vol.62 (10), p.3687-3696</ispartof><rights>1997 INIST-CNRS</rights><rights>Copyright American Society for Microbiology Oct 1996</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c668t-89aa1a6da647d338571003a63c97382c896ce10210dd4a7f917d0c8ac15a5f43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC168177/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC168177/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,3175,3176,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2472249$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8837424$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sauer, U. (Eidgenossische Technische Hochschule Zurich, Zurich, Switzerland.)</creatorcontrib><creatorcontrib>Hatzimanikatis, V</creatorcontrib><creatorcontrib>Hohmann, H.P</creatorcontrib><creatorcontrib>Manneberg, M</creatorcontrib><creatorcontrib>Loon, A.P.G.M. van</creatorcontrib><creatorcontrib>Bailey, J.E</creatorcontrib><title>Physiology and metabolic fluxes of wild-type and riboflavin-producing Bacillus subtilis</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>Continuous cultivation in a glucose-limited chemostat was used to determine the growth parameters of wildtype Bacillus subtilis and of a recombinant, riboflavin-producing strain. Maintenance coefficients of 0.45 and 0.66 mmol of glucose g-1 h-1 were determined for the wild-type and recombinant strains, respectively. However, the maximum molar growth yield of 82 to 85 g (cell dry weight)/mol of glucose was found to be almost identical in both strains. A nonlinear relationship between the specific riboflavin production rate and the dilution rate was observed, revealing a coupling of product formation and growth under strict substrate-limited conditions. Most prominently, riboflavin formation completely ceased at specific growth rates below 0.15 h-1. For molecular characterization of B. subtilis, the total amino acid composition of the wild type was experimentally determined and the complete building block requirements for biomass formation were derived. In particular, the murein sacculus was found to constitute approximately 9% of B. subtilis biomass, three- to fivefold more than in Escherichia coli. Estimation of intracellular metabolic fluxes by a refined mass balance approach revealed a substantial, growth rate-dependent flux through the oxidative branch of the pentose phosphate pathway. Furthermore, this flux is indicated to be increased in the strain engineered for riboflavin formation. Glucose catabolism at low growth rates with reduced biomass yields was supported mainly by the tricarboxylic acid cycle</description><subject>ACIDE AMINE</subject><subject>ADN RECOMBINADO</subject><subject>ADN RECOMBINE</subject><subject>Amino Acids - analysis</subject><subject>AMINOACIDOS</subject><subject>BACILLUS SUBTILIS</subject><subject>Bacillus subtilis - growth &amp; development</subject><subject>Bacillus subtilis - metabolism</subject><subject>Bacteria</subject><subject>Biological and medical sciences</subject><subject>Biology of microorganisms of confirmed or potential industrial interest</subject><subject>Biomass</subject><subject>BIOSINTESIS</subject><subject>BIOSYNTHESE</subject><subject>Biotechnology</subject><subject>COMPOSICION QUIMICA</subject><subject>COMPOSITION CHIMIQUE</subject><subject>CONSOMMATION D'OXYGENE</subject><subject>CONSUMO DE OXIGENO</subject><subject>CULTIVO DE CELULAS</subject><subject>CULTURE DE CELLULE</subject><subject>DIOXIDO DE CARBONO</subject><subject>DIOXYDE DE CARBONE</subject><subject>Enzymes</subject><subject>Escherichia coli - growth &amp; development</subject><subject>Escherichia coli - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>GASES</subject><subject>GAZ</subject><subject>GENE</subject><subject>GENES</subject><subject>GLUCOSA</subject><subject>GLUCOSE</subject><subject>Glucose - pharmacology</subject><subject>INDICE DE CRECIMIENTO</subject><subject>Metabolism</subject><subject>METABOLISME</subject><subject>METABOLISME DES GLUCIDES</subject><subject>METABOLISMO</subject><subject>METABOLISMO DE CARBOHIDRATOS</subject><subject>Microbiology</subject><subject>Mission oriented research</subject><subject>Models, Chemical</subject><subject>Peptidoglycan - analysis</subject><subject>Physiology and metabolism</subject><subject>POLISACARIDOS</subject><subject>POLYHOLOSIDE</subject><subject>RENDEMENT</subject><subject>RENDIMIENTO</subject><subject>Riboflavin - biosynthesis</subject><subject>RIBOFLAVINA</subject><subject>RIBOFLAVINE</subject><subject>TAUX DE CROISSANCE</subject><subject>TRANSFERENCIA DE GENES</subject><subject>TRANSFERT DE GENE</subject><subject>TRANSFORMACION GENETICA</subject><subject>TRANSFORMATION GENETIQUE</subject><issn>0099-2240</issn><issn>1098-5336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkkuLFDEUhYMoYzv6BwShEHFXbV6Vx8KFDr5gQMERl-F2KlWdIVVpk6oZ-9-bsptWZ-MqXO53bs7NCUIVwWtCqHoFblgLui4lE0rWTGixJlqLe2hFsFZ1w5i4j1YYa11TyvFD9Cjna4wxx0KdoTOlmOSUr9D3L9t99jHEfl_B2FaDm2ATg7dVF-afLlexq259aOtpv3O_ieQ3sQtw48d6l2I7Wz_21VuwPoQ5V3neTD74_Bg96CBk9-R4nqOr9--uLj7Wl58_fLp4c1lbIdRUKw1AQLQguGwZU40kGDMQzGrJFLVKC-sIpgS3LQfZaSJbbBVY0kDTcXaOXh_G7ubN4FrrxilBMLvkB0h7E8Gbfzuj35o-3hgiFJGy6F8e9Sn-mF2ezOCzdSHA6OKcjVTFU0Pof0HSyKaAooDP74DXcU5jeQNDcaMZ50QVSB0gm2LOyXUnxwSbJWBTAjaCLuUSsFkCNkvARfrs741PwmOipf_i2IdsIXQJRuvzCaNclv-g_9jc-n5765MzkIc7txbo6QHqIBroU5nz7auWmDZKs1_Lm8PP</recordid><startdate>19961001</startdate><enddate>19961001</enddate><creator>Sauer, U. (Eidgenossische Technische Hochschule Zurich, Zurich, Switzerland.)</creator><creator>Hatzimanikatis, V</creator><creator>Hohmann, H.P</creator><creator>Manneberg, M</creator><creator>Loon, A.P.G.M. van</creator><creator>Bailey, J.E</creator><general>American Society for Microbiology</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19961001</creationdate><title>Physiology and metabolic fluxes of wild-type and riboflavin-producing Bacillus subtilis</title><author>Sauer, U. (Eidgenossische Technische Hochschule Zurich, Zurich, Switzerland.) ; Hatzimanikatis, V ; Hohmann, H.P ; Manneberg, M ; Loon, A.P.G.M. van ; Bailey, J.E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c668t-89aa1a6da647d338571003a63c97382c896ce10210dd4a7f917d0c8ac15a5f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>ACIDE AMINE</topic><topic>ADN RECOMBINADO</topic><topic>ADN RECOMBINE</topic><topic>Amino Acids - analysis</topic><topic>AMINOACIDOS</topic><topic>BACILLUS SUBTILIS</topic><topic>Bacillus subtilis - growth &amp; development</topic><topic>Bacillus subtilis - metabolism</topic><topic>Bacteria</topic><topic>Biological and medical sciences</topic><topic>Biology of microorganisms of confirmed or potential industrial interest</topic><topic>Biomass</topic><topic>BIOSINTESIS</topic><topic>BIOSYNTHESE</topic><topic>Biotechnology</topic><topic>COMPOSICION QUIMICA</topic><topic>COMPOSITION CHIMIQUE</topic><topic>CONSOMMATION D'OXYGENE</topic><topic>CONSUMO DE OXIGENO</topic><topic>CULTIVO DE CELULAS</topic><topic>CULTURE DE CELLULE</topic><topic>DIOXIDO DE CARBONO</topic><topic>DIOXYDE DE CARBONE</topic><topic>Enzymes</topic><topic>Escherichia coli - growth &amp; development</topic><topic>Escherichia coli - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>GASES</topic><topic>GAZ</topic><topic>GENE</topic><topic>GENES</topic><topic>GLUCOSA</topic><topic>GLUCOSE</topic><topic>Glucose - pharmacology</topic><topic>INDICE DE CRECIMIENTO</topic><topic>Metabolism</topic><topic>METABOLISME</topic><topic>METABOLISME DES GLUCIDES</topic><topic>METABOLISMO</topic><topic>METABOLISMO DE CARBOHIDRATOS</topic><topic>Microbiology</topic><topic>Mission oriented research</topic><topic>Models, Chemical</topic><topic>Peptidoglycan - analysis</topic><topic>Physiology and metabolism</topic><topic>POLISACARIDOS</topic><topic>POLYHOLOSIDE</topic><topic>RENDEMENT</topic><topic>RENDIMIENTO</topic><topic>Riboflavin - biosynthesis</topic><topic>RIBOFLAVINA</topic><topic>RIBOFLAVINE</topic><topic>TAUX DE CROISSANCE</topic><topic>TRANSFERENCIA DE GENES</topic><topic>TRANSFERT DE GENE</topic><topic>TRANSFORMACION GENETICA</topic><topic>TRANSFORMATION GENETIQUE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sauer, U. (Eidgenossische Technische Hochschule Zurich, Zurich, Switzerland.)</creatorcontrib><creatorcontrib>Hatzimanikatis, V</creatorcontrib><creatorcontrib>Hohmann, H.P</creatorcontrib><creatorcontrib>Manneberg, M</creatorcontrib><creatorcontrib>Loon, A.P.G.M. van</creatorcontrib><creatorcontrib>Bailey, J.E</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sauer, U. (Eidgenossische Technische Hochschule Zurich, Zurich, Switzerland.)</au><au>Hatzimanikatis, V</au><au>Hohmann, H.P</au><au>Manneberg, M</au><au>Loon, A.P.G.M. van</au><au>Bailey, J.E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physiology and metabolic fluxes of wild-type and riboflavin-producing Bacillus subtilis</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>1996-10-01</date><risdate>1996</risdate><volume>62</volume><issue>10</issue><spage>3687</spage><epage>3696</epage><pages>3687-3696</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><coden>AEMIDF</coden><abstract>Continuous cultivation in a glucose-limited chemostat was used to determine the growth parameters of wildtype Bacillus subtilis and of a recombinant, riboflavin-producing strain. Maintenance coefficients of 0.45 and 0.66 mmol of glucose g-1 h-1 were determined for the wild-type and recombinant strains, respectively. However, the maximum molar growth yield of 82 to 85 g (cell dry weight)/mol of glucose was found to be almost identical in both strains. A nonlinear relationship between the specific riboflavin production rate and the dilution rate was observed, revealing a coupling of product formation and growth under strict substrate-limited conditions. Most prominently, riboflavin formation completely ceased at specific growth rates below 0.15 h-1. For molecular characterization of B. subtilis, the total amino acid composition of the wild type was experimentally determined and the complete building block requirements for biomass formation were derived. In particular, the murein sacculus was found to constitute approximately 9% of B. subtilis biomass, three- to fivefold more than in Escherichia coli. Estimation of intracellular metabolic fluxes by a refined mass balance approach revealed a substantial, growth rate-dependent flux through the oxidative branch of the pentose phosphate pathway. Furthermore, this flux is indicated to be increased in the strain engineered for riboflavin formation. Glucose catabolism at low growth rates with reduced biomass yields was supported mainly by the tricarboxylic acid cycle</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>8837424</pmid><doi>10.1128/aem.62.10.3687-3696.1996</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0099-2240
ispartof Applied and Environmental Microbiology, 1996-10, Vol.62 (10), p.3687-3696
issn 0099-2240
1098-5336
language eng
recordid cdi_proquest_journals_205934418
source MEDLINE; American Society for Microbiology Journals; PubMed Central; Alma/SFX Local Collection
subjects ACIDE AMINE
ADN RECOMBINADO
ADN RECOMBINE
Amino Acids - analysis
AMINOACIDOS
BACILLUS SUBTILIS
Bacillus subtilis - growth & development
Bacillus subtilis - metabolism
Bacteria
Biological and medical sciences
Biology of microorganisms of confirmed or potential industrial interest
Biomass
BIOSINTESIS
BIOSYNTHESE
Biotechnology
COMPOSICION QUIMICA
COMPOSITION CHIMIQUE
CONSOMMATION D'OXYGENE
CONSUMO DE OXIGENO
CULTIVO DE CELULAS
CULTURE DE CELLULE
DIOXIDO DE CARBONO
DIOXYDE DE CARBONE
Enzymes
Escherichia coli - growth & development
Escherichia coli - metabolism
Fundamental and applied biological sciences. Psychology
GASES
GAZ
GENE
GENES
GLUCOSA
GLUCOSE
Glucose - pharmacology
INDICE DE CRECIMIENTO
Metabolism
METABOLISME
METABOLISME DES GLUCIDES
METABOLISMO
METABOLISMO DE CARBOHIDRATOS
Microbiology
Mission oriented research
Models, Chemical
Peptidoglycan - analysis
Physiology and metabolism
POLISACARIDOS
POLYHOLOSIDE
RENDEMENT
RENDIMIENTO
Riboflavin - biosynthesis
RIBOFLAVINA
RIBOFLAVINE
TAUX DE CROISSANCE
TRANSFERENCIA DE GENES
TRANSFERT DE GENE
TRANSFORMACION GENETICA
TRANSFORMATION GENETIQUE
title Physiology and metabolic fluxes of wild-type and riboflavin-producing Bacillus subtilis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T18%3A18%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physiology%20and%20metabolic%20fluxes%20of%20wild-type%20and%20riboflavin-producing%20Bacillus%20subtilis&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=Sauer,%20U.%20(Eidgenossische%20Technische%20Hochschule%20Zurich,%20Zurich,%20Switzerland.)&rft.date=1996-10-01&rft.volume=62&rft.issue=10&rft.spage=3687&rft.epage=3696&rft.pages=3687-3696&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/aem.62.10.3687-3696.1996&rft_dat=%3Cproquest_pubme%3E15755516%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205934418&rft_id=info:pmid/8837424&rfr_iscdi=true