Multi-objective optimization of an engine mount design by means of memetic genetic programming and a local exploration approach
This work addresses the optimization of an engine mount design from a multi-objective scenario. Our methodology is divided into three phases: phase one focuses on data collection through computer simulations. The objectives considered during the analyses are: total mass, first natural frequency and...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent manufacturing 2020, Vol.31 (1), p.19-32 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 32 |
---|---|
container_issue | 1 |
container_start_page | 19 |
container_title | Journal of intelligent manufacturing |
container_volume | 31 |
creator | Alvarado-Iniesta, Alejandro Guillen-Anaya, Luis Gonzalo Rodríguez-Picón, Luis Alberto Ñeco-Caberta, Raul |
description | This work addresses the optimization of an engine mount design from a multi-objective scenario. Our methodology is divided into three phases: phase one focuses on data collection through computer simulations. The objectives considered during the analyses are: total mass, first natural frequency and maximum von Mises stress. In phase two, a surrogate model by means of genetic programming is generated for each one of the objectives. Moreover, a local search procedure is incorporated into the overall genetic programming algorithm for improving its performance. Finally, in phase three, instead of steering the search to finding the approximate Pareto front, a local exploration approach based on a change in the weight space is used to lead a search into user defined directions turning the decision making more intuitive. |
doi_str_mv | 10.1007/s10845-018-1432-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2059315453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2059315453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-6e8ce922bee2c8d3f847432b444d368eb6e5680da13ad685eb2fe1da11e173aa3</originalsourceid><addsrcrecordid>eNp1kE9LxDAUxIMouK5-AG8Bz9Gkadr0KIv_YMWLnkPavtYsbVKTrLhe_OpmreDJ0_DgNzO8Qeic0UtGaXkVGJW5IJRJwnKekeoALZgoMyJZLg7RglaiIEIwcYxOQthQSitZsAX6etwO0RBXb6CJ5h2wm6IZzaeOxlnsOqwtBtsbC3h0WxtxC8H0Ftc7PIK2YY-MMEI0De7B_ujkXe_1OBrbJ3uLNR5cowcMH9Pg_Jysp0Tp5vUUHXV6CHD2q0v0cnvzvLon66e7h9X1mjS8qCIpQDZQZVkNkDWy5Z3My_Rmned5ywsJdQGikLTVjOu2kALqrAOWTgas5FrzJbqYc1Pt2xZCVBu39TZVqoyKijORC54oNlONdyF46NTkzaj9TjGq9jureWeVdlb7nVWVPNnsCYm1Pfi_5P9N3zxUgvI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2059315453</pqid></control><display><type>article</type><title>Multi-objective optimization of an engine mount design by means of memetic genetic programming and a local exploration approach</title><source>Springer Nature - Complete Springer Journals</source><creator>Alvarado-Iniesta, Alejandro ; Guillen-Anaya, Luis Gonzalo ; Rodríguez-Picón, Luis Alberto ; Ñeco-Caberta, Raul</creator><creatorcontrib>Alvarado-Iniesta, Alejandro ; Guillen-Anaya, Luis Gonzalo ; Rodríguez-Picón, Luis Alberto ; Ñeco-Caberta, Raul</creatorcontrib><description>This work addresses the optimization of an engine mount design from a multi-objective scenario. Our methodology is divided into three phases: phase one focuses on data collection through computer simulations. The objectives considered during the analyses are: total mass, first natural frequency and maximum von Mises stress. In phase two, a surrogate model by means of genetic programming is generated for each one of the objectives. Moreover, a local search procedure is incorporated into the overall genetic programming algorithm for improving its performance. Finally, in phase three, instead of steering the search to finding the approximate Pareto front, a local exploration approach based on a change in the weight space is used to lead a search into user defined directions turning the decision making more intuitive.</description><identifier>ISSN: 0956-5515</identifier><identifier>EISSN: 1572-8145</identifier><identifier>DOI: 10.1007/s10845-018-1432-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Advanced manufacturing technologies ; Business and Management ; Computer simulation ; Control ; Data acquisition ; Data collection ; Decision making ; Design optimization ; Exploration ; Finite element analysis ; Genetic algorithms ; Machines ; Manufacturing ; Mechatronics ; Multiple objective analysis ; Optimization algorithms ; Processes ; Production ; Programming ; Resonant frequencies ; Robotics ; Searching ; Simulation</subject><ispartof>Journal of intelligent manufacturing, 2020, Vol.31 (1), p.19-32</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Journal of Intelligent Manufacturing is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-6e8ce922bee2c8d3f847432b444d368eb6e5680da13ad685eb2fe1da11e173aa3</citedby><cites>FETCH-LOGICAL-c369t-6e8ce922bee2c8d3f847432b444d368eb6e5680da13ad685eb2fe1da11e173aa3</cites><orcidid>0000-0002-3349-4823</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10845-018-1432-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10845-018-1432-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Alvarado-Iniesta, Alejandro</creatorcontrib><creatorcontrib>Guillen-Anaya, Luis Gonzalo</creatorcontrib><creatorcontrib>Rodríguez-Picón, Luis Alberto</creatorcontrib><creatorcontrib>Ñeco-Caberta, Raul</creatorcontrib><title>Multi-objective optimization of an engine mount design by means of memetic genetic programming and a local exploration approach</title><title>Journal of intelligent manufacturing</title><addtitle>J Intell Manuf</addtitle><description>This work addresses the optimization of an engine mount design from a multi-objective scenario. Our methodology is divided into three phases: phase one focuses on data collection through computer simulations. The objectives considered during the analyses are: total mass, first natural frequency and maximum von Mises stress. In phase two, a surrogate model by means of genetic programming is generated for each one of the objectives. Moreover, a local search procedure is incorporated into the overall genetic programming algorithm for improving its performance. Finally, in phase three, instead of steering the search to finding the approximate Pareto front, a local exploration approach based on a change in the weight space is used to lead a search into user defined directions turning the decision making more intuitive.</description><subject>Advanced manufacturing technologies</subject><subject>Business and Management</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Data acquisition</subject><subject>Data collection</subject><subject>Decision making</subject><subject>Design optimization</subject><subject>Exploration</subject><subject>Finite element analysis</subject><subject>Genetic algorithms</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechatronics</subject><subject>Multiple objective analysis</subject><subject>Optimization algorithms</subject><subject>Processes</subject><subject>Production</subject><subject>Programming</subject><subject>Resonant frequencies</subject><subject>Robotics</subject><subject>Searching</subject><subject>Simulation</subject><issn>0956-5515</issn><issn>1572-8145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LxDAUxIMouK5-AG8Bz9Gkadr0KIv_YMWLnkPavtYsbVKTrLhe_OpmreDJ0_DgNzO8Qeic0UtGaXkVGJW5IJRJwnKekeoALZgoMyJZLg7RglaiIEIwcYxOQthQSitZsAX6etwO0RBXb6CJ5h2wm6IZzaeOxlnsOqwtBtsbC3h0WxtxC8H0Ftc7PIK2YY-MMEI0De7B_ujkXe_1OBrbJ3uLNR5cowcMH9Pg_Jysp0Tp5vUUHXV6CHD2q0v0cnvzvLon66e7h9X1mjS8qCIpQDZQZVkNkDWy5Z3My_Rmned5ywsJdQGikLTVjOu2kALqrAOWTgas5FrzJbqYc1Pt2xZCVBu39TZVqoyKijORC54oNlONdyF46NTkzaj9TjGq9jureWeVdlb7nVWVPNnsCYm1Pfi_5P9N3zxUgvI</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Alvarado-Iniesta, Alejandro</creator><creator>Guillen-Anaya, Luis Gonzalo</creator><creator>Rodríguez-Picón, Luis Alberto</creator><creator>Ñeco-Caberta, Raul</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-3349-4823</orcidid></search><sort><creationdate>2020</creationdate><title>Multi-objective optimization of an engine mount design by means of memetic genetic programming and a local exploration approach</title><author>Alvarado-Iniesta, Alejandro ; Guillen-Anaya, Luis Gonzalo ; Rodríguez-Picón, Luis Alberto ; Ñeco-Caberta, Raul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-6e8ce922bee2c8d3f847432b444d368eb6e5680da13ad685eb2fe1da11e173aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Advanced manufacturing technologies</topic><topic>Business and Management</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Data acquisition</topic><topic>Data collection</topic><topic>Decision making</topic><topic>Design optimization</topic><topic>Exploration</topic><topic>Finite element analysis</topic><topic>Genetic algorithms</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechatronics</topic><topic>Multiple objective analysis</topic><topic>Optimization algorithms</topic><topic>Processes</topic><topic>Production</topic><topic>Programming</topic><topic>Resonant frequencies</topic><topic>Robotics</topic><topic>Searching</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alvarado-Iniesta, Alejandro</creatorcontrib><creatorcontrib>Guillen-Anaya, Luis Gonzalo</creatorcontrib><creatorcontrib>Rodríguez-Picón, Luis Alberto</creatorcontrib><creatorcontrib>Ñeco-Caberta, Raul</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of intelligent manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alvarado-Iniesta, Alejandro</au><au>Guillen-Anaya, Luis Gonzalo</au><au>Rodríguez-Picón, Luis Alberto</au><au>Ñeco-Caberta, Raul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-objective optimization of an engine mount design by means of memetic genetic programming and a local exploration approach</atitle><jtitle>Journal of intelligent manufacturing</jtitle><stitle>J Intell Manuf</stitle><date>2020</date><risdate>2020</risdate><volume>31</volume><issue>1</issue><spage>19</spage><epage>32</epage><pages>19-32</pages><issn>0956-5515</issn><eissn>1572-8145</eissn><abstract>This work addresses the optimization of an engine mount design from a multi-objective scenario. Our methodology is divided into three phases: phase one focuses on data collection through computer simulations. The objectives considered during the analyses are: total mass, first natural frequency and maximum von Mises stress. In phase two, a surrogate model by means of genetic programming is generated for each one of the objectives. Moreover, a local search procedure is incorporated into the overall genetic programming algorithm for improving its performance. Finally, in phase three, instead of steering the search to finding the approximate Pareto front, a local exploration approach based on a change in the weight space is used to lead a search into user defined directions turning the decision making more intuitive.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10845-018-1432-9</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3349-4823</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0956-5515 |
ispartof | Journal of intelligent manufacturing, 2020, Vol.31 (1), p.19-32 |
issn | 0956-5515 1572-8145 |
language | eng |
recordid | cdi_proquest_journals_2059315453 |
source | Springer Nature - Complete Springer Journals |
subjects | Advanced manufacturing technologies Business and Management Computer simulation Control Data acquisition Data collection Decision making Design optimization Exploration Finite element analysis Genetic algorithms Machines Manufacturing Mechatronics Multiple objective analysis Optimization algorithms Processes Production Programming Resonant frequencies Robotics Searching Simulation |
title | Multi-objective optimization of an engine mount design by means of memetic genetic programming and a local exploration approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T13%3A21%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-objective%20optimization%20of%20an%20engine%20mount%20design%20by%20means%20of%20memetic%20genetic%20programming%20and%20a%20local%20exploration%20approach&rft.jtitle=Journal%20of%20intelligent%20manufacturing&rft.au=Alvarado-Iniesta,%20Alejandro&rft.date=2020&rft.volume=31&rft.issue=1&rft.spage=19&rft.epage=32&rft.pages=19-32&rft.issn=0956-5515&rft.eissn=1572-8145&rft_id=info:doi/10.1007/s10845-018-1432-9&rft_dat=%3Cproquest_cross%3E2059315453%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2059315453&rft_id=info:pmid/&rfr_iscdi=true |