Enhanced Charge Separation Efficiency in DNA Templated Polymer Solar Cells

The insertion of a DNA nanolayer into polymer based solar cells, between the electron transport layer (ETL) and the active material, is proposed to improve the charge separation efficiency. Complete bulk heterojunction donor–acceptor solar cells of the layered type glass/electrode (indium tin oxide)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2018-06, Vol.28 (26), p.n/a
Hauptverfasser: Toschi, Francesco, Catone, Daniele, O'Keeffe, Patrick, Paladini, Alessandra, Turchini, Stefano, Dagar, Janardan, Brown, Thomas M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 26
container_start_page
container_title Advanced functional materials
container_volume 28
creator Toschi, Francesco
Catone, Daniele
O'Keeffe, Patrick
Paladini, Alessandra
Turchini, Stefano
Dagar, Janardan
Brown, Thomas M.
description The insertion of a DNA nanolayer into polymer based solar cells, between the electron transport layer (ETL) and the active material, is proposed to improve the charge separation efficiency. Complete bulk heterojunction donor–acceptor solar cells of the layered type glass/electrode (indium tin oxide)/ETL/P3HT:PC70BM/hole transport layer/electrode (Ag) are investigated using femtosecond transient absorption spectroscopy both in the NIR and the UV–vis regions of the spectrum. The transient spectral changes indicate that when the DNA is deposited on the ZnO nanoparticles (ZnO‐NPs) it can imprint a different long range order on the poly(3‐hexylthiophene) (P3HT) polymer with respect to the non‐ZnO‐NPs/DNA containing cells. This leads to a larger delocalization of the initially formed exciton and its faster quenching which is attributed to more efficient exciton dissociation. Finally, the temporal response of the NIR absorption shows that the DNA promotes more efficient production of charge transfer states and free polarons in the P3HT cation indicating that the increased exciton dissociation correlates with increased charge separation. Ultrafast pump–probe optical spectroscopy on polymer solar cells of varying composition shows that when DNA is used as a nano‐interlayer between the electron transport (ZnO nanoparticles) and photoactive (P3HT:PC70BM blend) layers the DNA imprints a long range order on poly(3‐hexylthiophene) (P3HT). Ordered P3HT structures are associated with delocalized singlet excitons which lead to an enhancement of the charge separation efficiency.
doi_str_mv 10.1002/adfm.201707126
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2058555610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2058555610</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3946-3084b165d957080da9d5f4cdbe8fcf51e2a1b3f6361647ce9cf26ee7c11488543</originalsourceid><addsrcrecordid>eNqFkEtLAzEURoMoWKtb1wHXrUkmyWSWZdr6oD6gFdyFNHNjp2QeJi0y_94pFV26undxzr0fH0LXlIwpIezWFK4aM0JTklImT9CASipHCWHq9Hen7-foIsYt6bE04QP0OKs3prZQ4HxjwgfgJbQmmF3Z1HjmXGlLqG2HyxpPnyd4BVXrza6nXxvfVRDwsvEm4By8j5fozBkf4epnDtHbfLbK70eLl7uHfLIY2STjhxCKr6kURSZSokhhskI4bos1KGedoMAMXSdOJn1inlrIrGMSILWUcqUET4bo5ni3Dc3nHuJOb5t9qPuXmhGhhBCSkp4aHykbmhgDON2GsjKh05ToQ1_60Jf-7asXsqPwVXro_qH1ZDp_-nO_ATd8bZk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2058555610</pqid></control><display><type>article</type><title>Enhanced Charge Separation Efficiency in DNA Templated Polymer Solar Cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Toschi, Francesco ; Catone, Daniele ; O'Keeffe, Patrick ; Paladini, Alessandra ; Turchini, Stefano ; Dagar, Janardan ; Brown, Thomas M.</creator><creatorcontrib>Toschi, Francesco ; Catone, Daniele ; O'Keeffe, Patrick ; Paladini, Alessandra ; Turchini, Stefano ; Dagar, Janardan ; Brown, Thomas M.</creatorcontrib><description>The insertion of a DNA nanolayer into polymer based solar cells, between the electron transport layer (ETL) and the active material, is proposed to improve the charge separation efficiency. Complete bulk heterojunction donor–acceptor solar cells of the layered type glass/electrode (indium tin oxide)/ETL/P3HT:PC70BM/hole transport layer/electrode (Ag) are investigated using femtosecond transient absorption spectroscopy both in the NIR and the UV–vis regions of the spectrum. The transient spectral changes indicate that when the DNA is deposited on the ZnO nanoparticles (ZnO‐NPs) it can imprint a different long range order on the poly(3‐hexylthiophene) (P3HT) polymer with respect to the non‐ZnO‐NPs/DNA containing cells. This leads to a larger delocalization of the initially formed exciton and its faster quenching which is attributed to more efficient exciton dissociation. Finally, the temporal response of the NIR absorption shows that the DNA promotes more efficient production of charge transfer states and free polarons in the P3HT cation indicating that the increased exciton dissociation correlates with increased charge separation. Ultrafast pump–probe optical spectroscopy on polymer solar cells of varying composition shows that when DNA is used as a nano‐interlayer between the electron transport (ZnO nanoparticles) and photoactive (P3HT:PC70BM blend) layers the DNA imprints a long range order on poly(3‐hexylthiophene) (P3HT). Ordered P3HT structures are associated with delocalized singlet excitons which lead to an enhancement of the charge separation efficiency.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201707126</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Charge efficiency ; charge separation ; Charge transfer ; Deoxyribonucleic acid ; DNA ; Electrodes ; Electron transport ; exciton dissociation ; Excitons ; Heterojunctions ; Indium tin oxides ; Long range order ; Materials science ; Nanoparticles ; Photovoltaic cells ; polymer based bulk heterojunction solar cells ; Polymers ; Separation ; Solar cells ; Tin oxides ; ultrafast transient absorption ; Zinc oxide</subject><ispartof>Advanced functional materials, 2018-06, Vol.28 (26), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3946-3084b165d957080da9d5f4cdbe8fcf51e2a1b3f6361647ce9cf26ee7c11488543</citedby><cites>FETCH-LOGICAL-c3946-3084b165d957080da9d5f4cdbe8fcf51e2a1b3f6361647ce9cf26ee7c11488543</cites><orcidid>0000-0003-2141-3587 ; 0000-0002-8676-4436</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201707126$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201707126$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Toschi, Francesco</creatorcontrib><creatorcontrib>Catone, Daniele</creatorcontrib><creatorcontrib>O'Keeffe, Patrick</creatorcontrib><creatorcontrib>Paladini, Alessandra</creatorcontrib><creatorcontrib>Turchini, Stefano</creatorcontrib><creatorcontrib>Dagar, Janardan</creatorcontrib><creatorcontrib>Brown, Thomas M.</creatorcontrib><title>Enhanced Charge Separation Efficiency in DNA Templated Polymer Solar Cells</title><title>Advanced functional materials</title><description>The insertion of a DNA nanolayer into polymer based solar cells, between the electron transport layer (ETL) and the active material, is proposed to improve the charge separation efficiency. Complete bulk heterojunction donor–acceptor solar cells of the layered type glass/electrode (indium tin oxide)/ETL/P3HT:PC70BM/hole transport layer/electrode (Ag) are investigated using femtosecond transient absorption spectroscopy both in the NIR and the UV–vis regions of the spectrum. The transient spectral changes indicate that when the DNA is deposited on the ZnO nanoparticles (ZnO‐NPs) it can imprint a different long range order on the poly(3‐hexylthiophene) (P3HT) polymer with respect to the non‐ZnO‐NPs/DNA containing cells. This leads to a larger delocalization of the initially formed exciton and its faster quenching which is attributed to more efficient exciton dissociation. Finally, the temporal response of the NIR absorption shows that the DNA promotes more efficient production of charge transfer states and free polarons in the P3HT cation indicating that the increased exciton dissociation correlates with increased charge separation. Ultrafast pump–probe optical spectroscopy on polymer solar cells of varying composition shows that when DNA is used as a nano‐interlayer between the electron transport (ZnO nanoparticles) and photoactive (P3HT:PC70BM blend) layers the DNA imprints a long range order on poly(3‐hexylthiophene) (P3HT). Ordered P3HT structures are associated with delocalized singlet excitons which lead to an enhancement of the charge separation efficiency.</description><subject>Charge efficiency</subject><subject>charge separation</subject><subject>Charge transfer</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Electrodes</subject><subject>Electron transport</subject><subject>exciton dissociation</subject><subject>Excitons</subject><subject>Heterojunctions</subject><subject>Indium tin oxides</subject><subject>Long range order</subject><subject>Materials science</subject><subject>Nanoparticles</subject><subject>Photovoltaic cells</subject><subject>polymer based bulk heterojunction solar cells</subject><subject>Polymers</subject><subject>Separation</subject><subject>Solar cells</subject><subject>Tin oxides</subject><subject>ultrafast transient absorption</subject><subject>Zinc oxide</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEURoMoWKtb1wHXrUkmyWSWZdr6oD6gFdyFNHNjp2QeJi0y_94pFV26undxzr0fH0LXlIwpIezWFK4aM0JTklImT9CASipHCWHq9Hen7-foIsYt6bE04QP0OKs3prZQ4HxjwgfgJbQmmF3Z1HjmXGlLqG2HyxpPnyd4BVXrza6nXxvfVRDwsvEm4By8j5fozBkf4epnDtHbfLbK70eLl7uHfLIY2STjhxCKr6kURSZSokhhskI4bos1KGedoMAMXSdOJn1inlrIrGMSILWUcqUET4bo5ni3Dc3nHuJOb5t9qPuXmhGhhBCSkp4aHykbmhgDON2GsjKh05ToQ1_60Jf-7asXsqPwVXro_qH1ZDp_-nO_ATd8bZk</recordid><startdate>20180627</startdate><enddate>20180627</enddate><creator>Toschi, Francesco</creator><creator>Catone, Daniele</creator><creator>O'Keeffe, Patrick</creator><creator>Paladini, Alessandra</creator><creator>Turchini, Stefano</creator><creator>Dagar, Janardan</creator><creator>Brown, Thomas M.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2141-3587</orcidid><orcidid>https://orcid.org/0000-0002-8676-4436</orcidid></search><sort><creationdate>20180627</creationdate><title>Enhanced Charge Separation Efficiency in DNA Templated Polymer Solar Cells</title><author>Toschi, Francesco ; Catone, Daniele ; O'Keeffe, Patrick ; Paladini, Alessandra ; Turchini, Stefano ; Dagar, Janardan ; Brown, Thomas M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3946-3084b165d957080da9d5f4cdbe8fcf51e2a1b3f6361647ce9cf26ee7c11488543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Charge efficiency</topic><topic>charge separation</topic><topic>Charge transfer</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Electrodes</topic><topic>Electron transport</topic><topic>exciton dissociation</topic><topic>Excitons</topic><topic>Heterojunctions</topic><topic>Indium tin oxides</topic><topic>Long range order</topic><topic>Materials science</topic><topic>Nanoparticles</topic><topic>Photovoltaic cells</topic><topic>polymer based bulk heterojunction solar cells</topic><topic>Polymers</topic><topic>Separation</topic><topic>Solar cells</topic><topic>Tin oxides</topic><topic>ultrafast transient absorption</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toschi, Francesco</creatorcontrib><creatorcontrib>Catone, Daniele</creatorcontrib><creatorcontrib>O'Keeffe, Patrick</creatorcontrib><creatorcontrib>Paladini, Alessandra</creatorcontrib><creatorcontrib>Turchini, Stefano</creatorcontrib><creatorcontrib>Dagar, Janardan</creatorcontrib><creatorcontrib>Brown, Thomas M.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toschi, Francesco</au><au>Catone, Daniele</au><au>O'Keeffe, Patrick</au><au>Paladini, Alessandra</au><au>Turchini, Stefano</au><au>Dagar, Janardan</au><au>Brown, Thomas M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Charge Separation Efficiency in DNA Templated Polymer Solar Cells</atitle><jtitle>Advanced functional materials</jtitle><date>2018-06-27</date><risdate>2018</risdate><volume>28</volume><issue>26</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The insertion of a DNA nanolayer into polymer based solar cells, between the electron transport layer (ETL) and the active material, is proposed to improve the charge separation efficiency. Complete bulk heterojunction donor–acceptor solar cells of the layered type glass/electrode (indium tin oxide)/ETL/P3HT:PC70BM/hole transport layer/electrode (Ag) are investigated using femtosecond transient absorption spectroscopy both in the NIR and the UV–vis regions of the spectrum. The transient spectral changes indicate that when the DNA is deposited on the ZnO nanoparticles (ZnO‐NPs) it can imprint a different long range order on the poly(3‐hexylthiophene) (P3HT) polymer with respect to the non‐ZnO‐NPs/DNA containing cells. This leads to a larger delocalization of the initially formed exciton and its faster quenching which is attributed to more efficient exciton dissociation. Finally, the temporal response of the NIR absorption shows that the DNA promotes more efficient production of charge transfer states and free polarons in the P3HT cation indicating that the increased exciton dissociation correlates with increased charge separation. Ultrafast pump–probe optical spectroscopy on polymer solar cells of varying composition shows that when DNA is used as a nano‐interlayer between the electron transport (ZnO nanoparticles) and photoactive (P3HT:PC70BM blend) layers the DNA imprints a long range order on poly(3‐hexylthiophene) (P3HT). Ordered P3HT structures are associated with delocalized singlet excitons which lead to an enhancement of the charge separation efficiency.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201707126</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2141-3587</orcidid><orcidid>https://orcid.org/0000-0002-8676-4436</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2018-06, Vol.28 (26), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2058555610
source Wiley Online Library Journals Frontfile Complete
subjects Charge efficiency
charge separation
Charge transfer
Deoxyribonucleic acid
DNA
Electrodes
Electron transport
exciton dissociation
Excitons
Heterojunctions
Indium tin oxides
Long range order
Materials science
Nanoparticles
Photovoltaic cells
polymer based bulk heterojunction solar cells
Polymers
Separation
Solar cells
Tin oxides
ultrafast transient absorption
Zinc oxide
title Enhanced Charge Separation Efficiency in DNA Templated Polymer Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A31%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Charge%20Separation%20Efficiency%20in%20DNA%20Templated%20Polymer%20Solar%20Cells&rft.jtitle=Advanced%20functional%20materials&rft.au=Toschi,%20Francesco&rft.date=2018-06-27&rft.volume=28&rft.issue=26&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201707126&rft_dat=%3Cproquest_cross%3E2058555610%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2058555610&rft_id=info:pmid/&rfr_iscdi=true