3D‐Printed Biomimetic Scaffold Simulating Microfibril Muscle Structure
In the human body, microfibril structures can be found in several types of tissue, such as muscles, nerves, and even tendons. However, most micropatterned fabrication methods have focused on 2D surface patterned configurations, which imitate the alignment and fusion of cardiac and skeletal muscle ce...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2018-06, Vol.28 (26), p.n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the human body, microfibril structures can be found in several types of tissue, such as muscles, nerves, and even tendons. However, most micropatterned fabrication methods have focused on 2D surface patterned configurations, which imitate the alignment and fusion of cardiac and skeletal muscle cells. Despite the development of these 2D methods, it has continued to be a challenge to fabricate realistic 3D microfibril structures. The goal of this study is to develop a micropatterned polycaprolactone (PCL) microfiber strut. This process uses a microfibrillation/leaching process of poly(vinyl alcohol) (PVA) from a PVA/PCL mixture to imitate skeletal muscle cell alignment and fusion in vitro. To attain the optimal processing conditions, a variety of parameters—including a mixture ratio, processing temperature, and pneumatic pressure—are considered. To increase biocompatibility of a microfibrous PCL bundle, the fabricated structure is supplemented with type‐I collagen. The myoblasts (C2C12 cells) are used to determine the cellular responses of the fabricated structure. By analyzing cell proliferation and myogenic differentiation, it can be confirmed that the hybrid microfibrillated structure can be an important potential platform to obtain efficient regeneration of muscle cells.
A biomimetic scaffold simulating microfibril muscle structure is fabricated using a 3D printing process supplemented with a microfibrillation/leaching process of poly(vinyl alcohol) and coating process of collagen. The synergistic combination of the aligned microfibril structure inducing topological cue and considerably biocompatible collagen component induces the high proliferation and alignment of myoblasts, resulting in the high degree of myotube formation. |
---|---|
ISSN: | 1616-301X 1616-3028 |
DOI: | 10.1002/adfm.201800405 |