Quantifying and Mitigating the Splitting Bias and Other Value Tree-Induced Weighting Biases
This paper develops a model for estimating and correcting attribute-weighting biases (such as the splitting bias) that result from the use of value trees when structuring value function weight elicitation. The model is based on the conjecture that attribute weights are influenced by tree structure a...
Gespeichert in:
Veröffentlicht in: | Decision analysis 2007-12, Vol.4 (4), p.194-210 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 210 |
---|---|
container_issue | 4 |
container_start_page | 194 |
container_title | Decision analysis |
container_volume | 4 |
creator | Jacobi, Sarah K Hobbs, Benjamin F |
description | This paper develops a model for estimating and correcting attribute-weighting biases (such as the splitting bias) that result from the use of value trees when structuring value function weight elicitation. The model is based on the conjecture that attribute weights are influenced by tree structure and a subject's use of the "anchor-and-adjust" heuristic, meaning that the subject starts with an equal allocation of weight among attributes in each tree partition and then adjusts the weights to reflect his or her innate preferences. Adjustments tend to be insufficient, resulting in attribute weights that are closer in value to each other than if the anchor-and-adjust heuristic was not employed. Weights corresponding to environmental and economic attributes of electric system expansion alternatives are elicited from employees of an electric utility and used to illustrate the existence and correction of value tree-induced attribute-weighting biases. Two weight sets are elicited from each subject, one using a nonhierarchical assessment and the other using a hierarchical one. The model results support the hypothesis that a bias exists that is consistent with the anchor-and-adjust heuristic. An analysis of rankings of alternatives and value losses caused by using elicited versus model-estimated debiased weight sets is provided. |
doi_str_mv | 10.1287/deca.1070.0100 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_205853719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A182605106</galeid><sourcerecordid>A182605106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2599-e0813d87b6ee8d7f6d44b5aa34206d7b5538c2c37bf1abc834589168e27a23c93</originalsourceid><addsrcrecordid>eNqFkTlPwzAUxyMEEufKHDGxpPhMnLFUHJVACFFgYLAc-yU1Sp1iJ0L99iQtx4JAb3iHfu_Q-0fRMUYjTER2ZkCrEUYZGiGM0Fa0hznjieCIbX_FLEe70X4IrwgRmqd4L3q575RrbbmyroqVM_GtbW2l2iFt5xA_LGvbrrNzq8KauOvrPn5SdQfxzAMkU2c6DSZ-BlvNv1kIh9FOqeoAR5_-IHq8vJhNrpObu6vpZHyTaMLzPAEkMDUiK1IAYbIyNYwVXCnKCEpNVnBOhSaaZkWJVaEFZVzkOBVAMkWozulBdLKZu_TNWwehla9N512_UhLEBacZHqBkA1WqBmld2bRe6QoceFU3Dkrbl8dYkBRxjNKeH_3C92ZgYfVfDdo3IXgo5dLbhfIriZEcBJKDQHIQSA4C_Vw0DPeL8D9_uuHn_Zvfrd9cNTT2oA22cZL1hnNGPwALgJ9e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205853719</pqid></control><display><type>article</type><title>Quantifying and Mitigating the Splitting Bias and Other Value Tree-Induced Weighting Biases</title><source>Informs</source><source>EBSCOhost Business Source Complete</source><creator>Jacobi, Sarah K ; Hobbs, Benjamin F</creator><creatorcontrib>Jacobi, Sarah K ; Hobbs, Benjamin F</creatorcontrib><description>This paper develops a model for estimating and correcting attribute-weighting biases (such as the splitting bias) that result from the use of value trees when structuring value function weight elicitation. The model is based on the conjecture that attribute weights are influenced by tree structure and a subject's use of the "anchor-and-adjust" heuristic, meaning that the subject starts with an equal allocation of weight among attributes in each tree partition and then adjusts the weights to reflect his or her innate preferences. Adjustments tend to be insufficient, resulting in attribute weights that are closer in value to each other than if the anchor-and-adjust heuristic was not employed. Weights corresponding to environmental and economic attributes of electric system expansion alternatives are elicited from employees of an electric utility and used to illustrate the existence and correction of value tree-induced attribute-weighting biases. Two weight sets are elicited from each subject, one using a nonhierarchical assessment and the other using a hierarchical one. The model results support the hypothesis that a bias exists that is consistent with the anchor-and-adjust heuristic. An analysis of rankings of alternatives and value losses caused by using elicited versus model-estimated debiased weight sets is provided.</description><identifier>ISSN: 1545-8490</identifier><identifier>EISSN: 1545-8504</identifier><identifier>DOI: 10.1287/deca.1070.0100</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>additive value function ; Analysis ; anchor-and-adjust heuristic ; Bias ; debiasing ; Decision analysis ; Decision-making ; electric power planning ; Expected values ; Experiments ; Heuristic ; Influence ; Literature reviews ; Methods ; multiattribute decision analysis ; nonlinear programming ; Objectives ; splitting bias ; Studies ; Trees ; value trees ; Weight ; weight elicitation</subject><ispartof>Decision analysis, 2007-12, Vol.4 (4), p.194-210</ispartof><rights>COPYRIGHT 2007 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences Dec 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2599-e0813d87b6ee8d7f6d44b5aa34206d7b5538c2c37bf1abc834589168e27a23c93</citedby><cites>FETCH-LOGICAL-c2599-e0813d87b6ee8d7f6d44b5aa34206d7b5538c2c37bf1abc834589168e27a23c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/deca.1070.0100$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,780,784,3692,27924,27925,62616</link.rule.ids></links><search><creatorcontrib>Jacobi, Sarah K</creatorcontrib><creatorcontrib>Hobbs, Benjamin F</creatorcontrib><title>Quantifying and Mitigating the Splitting Bias and Other Value Tree-Induced Weighting Biases</title><title>Decision analysis</title><description>This paper develops a model for estimating and correcting attribute-weighting biases (such as the splitting bias) that result from the use of value trees when structuring value function weight elicitation. The model is based on the conjecture that attribute weights are influenced by tree structure and a subject's use of the "anchor-and-adjust" heuristic, meaning that the subject starts with an equal allocation of weight among attributes in each tree partition and then adjusts the weights to reflect his or her innate preferences. Adjustments tend to be insufficient, resulting in attribute weights that are closer in value to each other than if the anchor-and-adjust heuristic was not employed. Weights corresponding to environmental and economic attributes of electric system expansion alternatives are elicited from employees of an electric utility and used to illustrate the existence and correction of value tree-induced attribute-weighting biases. Two weight sets are elicited from each subject, one using a nonhierarchical assessment and the other using a hierarchical one. The model results support the hypothesis that a bias exists that is consistent with the anchor-and-adjust heuristic. An analysis of rankings of alternatives and value losses caused by using elicited versus model-estimated debiased weight sets is provided.</description><subject>additive value function</subject><subject>Analysis</subject><subject>anchor-and-adjust heuristic</subject><subject>Bias</subject><subject>debiasing</subject><subject>Decision analysis</subject><subject>Decision-making</subject><subject>electric power planning</subject><subject>Expected values</subject><subject>Experiments</subject><subject>Heuristic</subject><subject>Influence</subject><subject>Literature reviews</subject><subject>Methods</subject><subject>multiattribute decision analysis</subject><subject>nonlinear programming</subject><subject>Objectives</subject><subject>splitting bias</subject><subject>Studies</subject><subject>Trees</subject><subject>value trees</subject><subject>Weight</subject><subject>weight elicitation</subject><issn>1545-8490</issn><issn>1545-8504</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkTlPwzAUxyMEEufKHDGxpPhMnLFUHJVACFFgYLAc-yU1Sp1iJ0L99iQtx4JAb3iHfu_Q-0fRMUYjTER2ZkCrEUYZGiGM0Fa0hznjieCIbX_FLEe70X4IrwgRmqd4L3q575RrbbmyroqVM_GtbW2l2iFt5xA_LGvbrrNzq8KauOvrPn5SdQfxzAMkU2c6DSZ-BlvNv1kIh9FOqeoAR5_-IHq8vJhNrpObu6vpZHyTaMLzPAEkMDUiK1IAYbIyNYwVXCnKCEpNVnBOhSaaZkWJVaEFZVzkOBVAMkWozulBdLKZu_TNWwehla9N512_UhLEBacZHqBkA1WqBmld2bRe6QoceFU3Dkrbl8dYkBRxjNKeH_3C92ZgYfVfDdo3IXgo5dLbhfIriZEcBJKDQHIQSA4C_Vw0DPeL8D9_uuHn_Zvfrd9cNTT2oA22cZL1hnNGPwALgJ9e</recordid><startdate>20071201</startdate><enddate>20071201</enddate><creator>Jacobi, Sarah K</creator><creator>Hobbs, Benjamin F</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88G</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M2M</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20071201</creationdate><title>Quantifying and Mitigating the Splitting Bias and Other Value Tree-Induced Weighting Biases</title><author>Jacobi, Sarah K ; Hobbs, Benjamin F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2599-e0813d87b6ee8d7f6d44b5aa34206d7b5538c2c37bf1abc834589168e27a23c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>additive value function</topic><topic>Analysis</topic><topic>anchor-and-adjust heuristic</topic><topic>Bias</topic><topic>debiasing</topic><topic>Decision analysis</topic><topic>Decision-making</topic><topic>electric power planning</topic><topic>Expected values</topic><topic>Experiments</topic><topic>Heuristic</topic><topic>Influence</topic><topic>Literature reviews</topic><topic>Methods</topic><topic>multiattribute decision analysis</topic><topic>nonlinear programming</topic><topic>Objectives</topic><topic>splitting bias</topic><topic>Studies</topic><topic>Trees</topic><topic>value trees</topic><topic>Weight</topic><topic>weight elicitation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jacobi, Sarah K</creatorcontrib><creatorcontrib>Hobbs, Benjamin F</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Decision analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jacobi, Sarah K</au><au>Hobbs, Benjamin F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying and Mitigating the Splitting Bias and Other Value Tree-Induced Weighting Biases</atitle><jtitle>Decision analysis</jtitle><date>2007-12-01</date><risdate>2007</risdate><volume>4</volume><issue>4</issue><spage>194</spage><epage>210</epage><pages>194-210</pages><issn>1545-8490</issn><eissn>1545-8504</eissn><abstract>This paper develops a model for estimating and correcting attribute-weighting biases (such as the splitting bias) that result from the use of value trees when structuring value function weight elicitation. The model is based on the conjecture that attribute weights are influenced by tree structure and a subject's use of the "anchor-and-adjust" heuristic, meaning that the subject starts with an equal allocation of weight among attributes in each tree partition and then adjusts the weights to reflect his or her innate preferences. Adjustments tend to be insufficient, resulting in attribute weights that are closer in value to each other than if the anchor-and-adjust heuristic was not employed. Weights corresponding to environmental and economic attributes of electric system expansion alternatives are elicited from employees of an electric utility and used to illustrate the existence and correction of value tree-induced attribute-weighting biases. Two weight sets are elicited from each subject, one using a nonhierarchical assessment and the other using a hierarchical one. The model results support the hypothesis that a bias exists that is consistent with the anchor-and-adjust heuristic. An analysis of rankings of alternatives and value losses caused by using elicited versus model-estimated debiased weight sets is provided.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/deca.1070.0100</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-8490 |
ispartof | Decision analysis, 2007-12, Vol.4 (4), p.194-210 |
issn | 1545-8490 1545-8504 |
language | eng |
recordid | cdi_proquest_journals_205853719 |
source | Informs; EBSCOhost Business Source Complete |
subjects | additive value function Analysis anchor-and-adjust heuristic Bias debiasing Decision analysis Decision-making electric power planning Expected values Experiments Heuristic Influence Literature reviews Methods multiattribute decision analysis nonlinear programming Objectives splitting bias Studies Trees value trees Weight weight elicitation |
title | Quantifying and Mitigating the Splitting Bias and Other Value Tree-Induced Weighting Biases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A40%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20and%20Mitigating%20the%20Splitting%20Bias%20and%20Other%20Value%20Tree-Induced%20Weighting%20Biases&rft.jtitle=Decision%20analysis&rft.au=Jacobi,%20Sarah%20K&rft.date=2007-12-01&rft.volume=4&rft.issue=4&rft.spage=194&rft.epage=210&rft.pages=194-210&rft.issn=1545-8490&rft.eissn=1545-8504&rft_id=info:doi/10.1287/deca.1070.0100&rft_dat=%3Cgale_proqu%3EA182605106%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205853719&rft_id=info:pmid/&rft_galeid=A182605106&rfr_iscdi=true |