Quantifying and Mitigating the Splitting Bias and Other Value Tree-Induced Weighting Biases

This paper develops a model for estimating and correcting attribute-weighting biases (such as the splitting bias) that result from the use of value trees when structuring value function weight elicitation. The model is based on the conjecture that attribute weights are influenced by tree structure a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Decision analysis 2007-12, Vol.4 (4), p.194-210
Hauptverfasser: Jacobi, Sarah K, Hobbs, Benjamin F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 210
container_issue 4
container_start_page 194
container_title Decision analysis
container_volume 4
creator Jacobi, Sarah K
Hobbs, Benjamin F
description This paper develops a model for estimating and correcting attribute-weighting biases (such as the splitting bias) that result from the use of value trees when structuring value function weight elicitation. The model is based on the conjecture that attribute weights are influenced by tree structure and a subject's use of the "anchor-and-adjust" heuristic, meaning that the subject starts with an equal allocation of weight among attributes in each tree partition and then adjusts the weights to reflect his or her innate preferences. Adjustments tend to be insufficient, resulting in attribute weights that are closer in value to each other than if the anchor-and-adjust heuristic was not employed. Weights corresponding to environmental and economic attributes of electric system expansion alternatives are elicited from employees of an electric utility and used to illustrate the existence and correction of value tree-induced attribute-weighting biases. Two weight sets are elicited from each subject, one using a nonhierarchical assessment and the other using a hierarchical one. The model results support the hypothesis that a bias exists that is consistent with the anchor-and-adjust heuristic. An analysis of rankings of alternatives and value losses caused by using elicited versus model-estimated debiased weight sets is provided.
doi_str_mv 10.1287/deca.1070.0100
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_205853719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A182605106</galeid><sourcerecordid>A182605106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2599-e0813d87b6ee8d7f6d44b5aa34206d7b5538c2c37bf1abc834589168e27a23c93</originalsourceid><addsrcrecordid>eNqFkTlPwzAUxyMEEufKHDGxpPhMnLFUHJVACFFgYLAc-yU1Sp1iJ0L99iQtx4JAb3iHfu_Q-0fRMUYjTER2ZkCrEUYZGiGM0Fa0hznjieCIbX_FLEe70X4IrwgRmqd4L3q575RrbbmyroqVM_GtbW2l2iFt5xA_LGvbrrNzq8KauOvrPn5SdQfxzAMkU2c6DSZ-BlvNv1kIh9FOqeoAR5_-IHq8vJhNrpObu6vpZHyTaMLzPAEkMDUiK1IAYbIyNYwVXCnKCEpNVnBOhSaaZkWJVaEFZVzkOBVAMkWozulBdLKZu_TNWwehla9N512_UhLEBacZHqBkA1WqBmld2bRe6QoceFU3Dkrbl8dYkBRxjNKeH_3C92ZgYfVfDdo3IXgo5dLbhfIriZEcBJKDQHIQSA4C_Vw0DPeL8D9_uuHn_Zvfrd9cNTT2oA22cZL1hnNGPwALgJ9e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205853719</pqid></control><display><type>article</type><title>Quantifying and Mitigating the Splitting Bias and Other Value Tree-Induced Weighting Biases</title><source>Informs</source><source>EBSCOhost Business Source Complete</source><creator>Jacobi, Sarah K ; Hobbs, Benjamin F</creator><creatorcontrib>Jacobi, Sarah K ; Hobbs, Benjamin F</creatorcontrib><description>This paper develops a model for estimating and correcting attribute-weighting biases (such as the splitting bias) that result from the use of value trees when structuring value function weight elicitation. The model is based on the conjecture that attribute weights are influenced by tree structure and a subject's use of the "anchor-and-adjust" heuristic, meaning that the subject starts with an equal allocation of weight among attributes in each tree partition and then adjusts the weights to reflect his or her innate preferences. Adjustments tend to be insufficient, resulting in attribute weights that are closer in value to each other than if the anchor-and-adjust heuristic was not employed. Weights corresponding to environmental and economic attributes of electric system expansion alternatives are elicited from employees of an electric utility and used to illustrate the existence and correction of value tree-induced attribute-weighting biases. Two weight sets are elicited from each subject, one using a nonhierarchical assessment and the other using a hierarchical one. The model results support the hypothesis that a bias exists that is consistent with the anchor-and-adjust heuristic. An analysis of rankings of alternatives and value losses caused by using elicited versus model-estimated debiased weight sets is provided.</description><identifier>ISSN: 1545-8490</identifier><identifier>EISSN: 1545-8504</identifier><identifier>DOI: 10.1287/deca.1070.0100</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>additive value function ; Analysis ; anchor-and-adjust heuristic ; Bias ; debiasing ; Decision analysis ; Decision-making ; electric power planning ; Expected values ; Experiments ; Heuristic ; Influence ; Literature reviews ; Methods ; multiattribute decision analysis ; nonlinear programming ; Objectives ; splitting bias ; Studies ; Trees ; value trees ; Weight ; weight elicitation</subject><ispartof>Decision analysis, 2007-12, Vol.4 (4), p.194-210</ispartof><rights>COPYRIGHT 2007 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences Dec 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2599-e0813d87b6ee8d7f6d44b5aa34206d7b5538c2c37bf1abc834589168e27a23c93</citedby><cites>FETCH-LOGICAL-c2599-e0813d87b6ee8d7f6d44b5aa34206d7b5538c2c37bf1abc834589168e27a23c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/deca.1070.0100$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,780,784,3692,27924,27925,62616</link.rule.ids></links><search><creatorcontrib>Jacobi, Sarah K</creatorcontrib><creatorcontrib>Hobbs, Benjamin F</creatorcontrib><title>Quantifying and Mitigating the Splitting Bias and Other Value Tree-Induced Weighting Biases</title><title>Decision analysis</title><description>This paper develops a model for estimating and correcting attribute-weighting biases (such as the splitting bias) that result from the use of value trees when structuring value function weight elicitation. The model is based on the conjecture that attribute weights are influenced by tree structure and a subject's use of the "anchor-and-adjust" heuristic, meaning that the subject starts with an equal allocation of weight among attributes in each tree partition and then adjusts the weights to reflect his or her innate preferences. Adjustments tend to be insufficient, resulting in attribute weights that are closer in value to each other than if the anchor-and-adjust heuristic was not employed. Weights corresponding to environmental and economic attributes of electric system expansion alternatives are elicited from employees of an electric utility and used to illustrate the existence and correction of value tree-induced attribute-weighting biases. Two weight sets are elicited from each subject, one using a nonhierarchical assessment and the other using a hierarchical one. The model results support the hypothesis that a bias exists that is consistent with the anchor-and-adjust heuristic. An analysis of rankings of alternatives and value losses caused by using elicited versus model-estimated debiased weight sets is provided.</description><subject>additive value function</subject><subject>Analysis</subject><subject>anchor-and-adjust heuristic</subject><subject>Bias</subject><subject>debiasing</subject><subject>Decision analysis</subject><subject>Decision-making</subject><subject>electric power planning</subject><subject>Expected values</subject><subject>Experiments</subject><subject>Heuristic</subject><subject>Influence</subject><subject>Literature reviews</subject><subject>Methods</subject><subject>multiattribute decision analysis</subject><subject>nonlinear programming</subject><subject>Objectives</subject><subject>splitting bias</subject><subject>Studies</subject><subject>Trees</subject><subject>value trees</subject><subject>Weight</subject><subject>weight elicitation</subject><issn>1545-8490</issn><issn>1545-8504</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkTlPwzAUxyMEEufKHDGxpPhMnLFUHJVACFFgYLAc-yU1Sp1iJ0L99iQtx4JAb3iHfu_Q-0fRMUYjTER2ZkCrEUYZGiGM0Fa0hznjieCIbX_FLEe70X4IrwgRmqd4L3q575RrbbmyroqVM_GtbW2l2iFt5xA_LGvbrrNzq8KauOvrPn5SdQfxzAMkU2c6DSZ-BlvNv1kIh9FOqeoAR5_-IHq8vJhNrpObu6vpZHyTaMLzPAEkMDUiK1IAYbIyNYwVXCnKCEpNVnBOhSaaZkWJVaEFZVzkOBVAMkWozulBdLKZu_TNWwehla9N512_UhLEBacZHqBkA1WqBmld2bRe6QoceFU3Dkrbl8dYkBRxjNKeH_3C92ZgYfVfDdo3IXgo5dLbhfIriZEcBJKDQHIQSA4C_Vw0DPeL8D9_uuHn_Zvfrd9cNTT2oA22cZL1hnNGPwALgJ9e</recordid><startdate>20071201</startdate><enddate>20071201</enddate><creator>Jacobi, Sarah K</creator><creator>Hobbs, Benjamin F</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88G</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M2M</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20071201</creationdate><title>Quantifying and Mitigating the Splitting Bias and Other Value Tree-Induced Weighting Biases</title><author>Jacobi, Sarah K ; Hobbs, Benjamin F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2599-e0813d87b6ee8d7f6d44b5aa34206d7b5538c2c37bf1abc834589168e27a23c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>additive value function</topic><topic>Analysis</topic><topic>anchor-and-adjust heuristic</topic><topic>Bias</topic><topic>debiasing</topic><topic>Decision analysis</topic><topic>Decision-making</topic><topic>electric power planning</topic><topic>Expected values</topic><topic>Experiments</topic><topic>Heuristic</topic><topic>Influence</topic><topic>Literature reviews</topic><topic>Methods</topic><topic>multiattribute decision analysis</topic><topic>nonlinear programming</topic><topic>Objectives</topic><topic>splitting bias</topic><topic>Studies</topic><topic>Trees</topic><topic>value trees</topic><topic>Weight</topic><topic>weight elicitation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jacobi, Sarah K</creatorcontrib><creatorcontrib>Hobbs, Benjamin F</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Decision analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jacobi, Sarah K</au><au>Hobbs, Benjamin F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying and Mitigating the Splitting Bias and Other Value Tree-Induced Weighting Biases</atitle><jtitle>Decision analysis</jtitle><date>2007-12-01</date><risdate>2007</risdate><volume>4</volume><issue>4</issue><spage>194</spage><epage>210</epage><pages>194-210</pages><issn>1545-8490</issn><eissn>1545-8504</eissn><abstract>This paper develops a model for estimating and correcting attribute-weighting biases (such as the splitting bias) that result from the use of value trees when structuring value function weight elicitation. The model is based on the conjecture that attribute weights are influenced by tree structure and a subject's use of the "anchor-and-adjust" heuristic, meaning that the subject starts with an equal allocation of weight among attributes in each tree partition and then adjusts the weights to reflect his or her innate preferences. Adjustments tend to be insufficient, resulting in attribute weights that are closer in value to each other than if the anchor-and-adjust heuristic was not employed. Weights corresponding to environmental and economic attributes of electric system expansion alternatives are elicited from employees of an electric utility and used to illustrate the existence and correction of value tree-induced attribute-weighting biases. Two weight sets are elicited from each subject, one using a nonhierarchical assessment and the other using a hierarchical one. The model results support the hypothesis that a bias exists that is consistent with the anchor-and-adjust heuristic. An analysis of rankings of alternatives and value losses caused by using elicited versus model-estimated debiased weight sets is provided.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/deca.1070.0100</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1545-8490
ispartof Decision analysis, 2007-12, Vol.4 (4), p.194-210
issn 1545-8490
1545-8504
language eng
recordid cdi_proquest_journals_205853719
source Informs; EBSCOhost Business Source Complete
subjects additive value function
Analysis
anchor-and-adjust heuristic
Bias
debiasing
Decision analysis
Decision-making
electric power planning
Expected values
Experiments
Heuristic
Influence
Literature reviews
Methods
multiattribute decision analysis
nonlinear programming
Objectives
splitting bias
Studies
Trees
value trees
Weight
weight elicitation
title Quantifying and Mitigating the Splitting Bias and Other Value Tree-Induced Weighting Biases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A40%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20and%20Mitigating%20the%20Splitting%20Bias%20and%20Other%20Value%20Tree-Induced%20Weighting%20Biases&rft.jtitle=Decision%20analysis&rft.au=Jacobi,%20Sarah%20K&rft.date=2007-12-01&rft.volume=4&rft.issue=4&rft.spage=194&rft.epage=210&rft.pages=194-210&rft.issn=1545-8490&rft.eissn=1545-8504&rft_id=info:doi/10.1287/deca.1070.0100&rft_dat=%3Cgale_proqu%3EA182605106%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205853719&rft_id=info:pmid/&rft_galeid=A182605106&rfr_iscdi=true