A General Method for the Ulam Stability of Linear Differential Equations

This paper deals with the Ulam stability of linear differential equations by using the method of variation of parameters, which provides a unified method to study the Ulam stability problem of linear differential equations of n -th order with constant and nonconstant coefficients. As an application...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Malaysian Mathematical Sciences Society 2019-11, Vol.42 (6), p.3187-3211
Hauptverfasser: Shen, Yonghong, Li, Yongjin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3211
container_issue 6
container_start_page 3187
container_title Bulletin of the Malaysian Mathematical Sciences Society
container_volume 42
creator Shen, Yonghong
Li, Yongjin
description This paper deals with the Ulam stability of linear differential equations by using the method of variation of parameters, which provides a unified method to study the Ulam stability problem of linear differential equations of n -th order with constant and nonconstant coefficients. As an application of the main results, we also obtain the Hyers–Ulam stability of the Cauchy–Euler differential equations of second order, third order and n -th order. Our results make up to some deficiencies in the relevant literature.
doi_str_mv 10.1007/s40840-018-0653-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2058282797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2058282797</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-55e42490c2cc829491564e0a576bc7e8f6ff3c4d4a5d9de78bffddfd58da2f63</originalsourceid><addsrcrecordid>eNp1kMFOAjEURRujiUT5AHdNXFdfO22nsySIYIJxIa6bMn2VITADbVnw9w4ZE1e-zd3cc19yCHng8MQByuckwUhgwA0DrQqmr8hIcANMCtDXZARcaKZLULdknNIW-lNaaMFHZDGhc2wxuh19x7zpPA1dpHmD9Gvn9vQzu3Wza_KZdoEumxZdpC9NCBixzU0PzY4nl5uuTffkJrhdwvFv3pHV62w1XbDlx_xtOlmyujAiM6VQCllBLeraiEpWXGmJ4FSp13WJJugQilp66ZSvPJZmHYL3wSvjnQi6uCOPw-whdscTpmy33Sm2_UcrQBlhRFmVfYsPrTp2KUUM9hCbvYtny8FelNlBme2V2Ysye1kWA5P6bvuN8W_5f-gHkJ9ttA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2058282797</pqid></control><display><type>article</type><title>A General Method for the Ulam Stability of Linear Differential Equations</title><source>SpringerNature Journals</source><creator>Shen, Yonghong ; Li, Yongjin</creator><creatorcontrib>Shen, Yonghong ; Li, Yongjin</creatorcontrib><description>This paper deals with the Ulam stability of linear differential equations by using the method of variation of parameters, which provides a unified method to study the Ulam stability problem of linear differential equations of n -th order with constant and nonconstant coefficients. As an application of the main results, we also obtain the Hyers–Ulam stability of the Cauchy–Euler differential equations of second order, third order and n -th order. Our results make up to some deficiencies in the relevant literature.</description><identifier>ISSN: 0126-6705</identifier><identifier>EISSN: 2180-4206</identifier><identifier>DOI: 10.1007/s40840-018-0653-6</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Applications of Mathematics ; Differential equations ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Stability</subject><ispartof>Bulletin of the Malaysian Mathematical Sciences Society, 2019-11, Vol.42 (6), p.3187-3211</ispartof><rights>Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2018</rights><rights>Bulletin of the Malaysian Mathematical Sciences Society is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-55e42490c2cc829491564e0a576bc7e8f6ff3c4d4a5d9de78bffddfd58da2f63</citedby><cites>FETCH-LOGICAL-c382t-55e42490c2cc829491564e0a576bc7e8f6ff3c4d4a5d9de78bffddfd58da2f63</cites><orcidid>0000-0002-1525-851X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40840-018-0653-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40840-018-0653-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Shen, Yonghong</creatorcontrib><creatorcontrib>Li, Yongjin</creatorcontrib><title>A General Method for the Ulam Stability of Linear Differential Equations</title><title>Bulletin of the Malaysian Mathematical Sciences Society</title><addtitle>Bull. Malays. Math. Sci. Soc</addtitle><description>This paper deals with the Ulam stability of linear differential equations by using the method of variation of parameters, which provides a unified method to study the Ulam stability problem of linear differential equations of n -th order with constant and nonconstant coefficients. As an application of the main results, we also obtain the Hyers–Ulam stability of the Cauchy–Euler differential equations of second order, third order and n -th order. Our results make up to some deficiencies in the relevant literature.</description><subject>Applications of Mathematics</subject><subject>Differential equations</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Stability</subject><issn>0126-6705</issn><issn>2180-4206</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kMFOAjEURRujiUT5AHdNXFdfO22nsySIYIJxIa6bMn2VITADbVnw9w4ZE1e-zd3cc19yCHng8MQByuckwUhgwA0DrQqmr8hIcANMCtDXZARcaKZLULdknNIW-lNaaMFHZDGhc2wxuh19x7zpPA1dpHmD9Gvn9vQzu3Wza_KZdoEumxZdpC9NCBixzU0PzY4nl5uuTffkJrhdwvFv3pHV62w1XbDlx_xtOlmyujAiM6VQCllBLeraiEpWXGmJ4FSp13WJJugQilp66ZSvPJZmHYL3wSvjnQi6uCOPw-whdscTpmy33Sm2_UcrQBlhRFmVfYsPrTp2KUUM9hCbvYtny8FelNlBme2V2Ysye1kWA5P6bvuN8W_5f-gHkJ9ttA</recordid><startdate>20191115</startdate><enddate>20191115</enddate><creator>Shen, Yonghong</creator><creator>Li, Yongjin</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-1525-851X</orcidid></search><sort><creationdate>20191115</creationdate><title>A General Method for the Ulam Stability of Linear Differential Equations</title><author>Shen, Yonghong ; Li, Yongjin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-55e42490c2cc829491564e0a576bc7e8f6ff3c4d4a5d9de78bffddfd58da2f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applications of Mathematics</topic><topic>Differential equations</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Yonghong</creatorcontrib><creatorcontrib>Li, Yongjin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East &amp; South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Bulletin of the Malaysian Mathematical Sciences Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Yonghong</au><au>Li, Yongjin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A General Method for the Ulam Stability of Linear Differential Equations</atitle><jtitle>Bulletin of the Malaysian Mathematical Sciences Society</jtitle><stitle>Bull. Malays. Math. Sci. Soc</stitle><date>2019-11-15</date><risdate>2019</risdate><volume>42</volume><issue>6</issue><spage>3187</spage><epage>3211</epage><pages>3187-3211</pages><issn>0126-6705</issn><eissn>2180-4206</eissn><abstract>This paper deals with the Ulam stability of linear differential equations by using the method of variation of parameters, which provides a unified method to study the Ulam stability problem of linear differential equations of n -th order with constant and nonconstant coefficients. As an application of the main results, we also obtain the Hyers–Ulam stability of the Cauchy–Euler differential equations of second order, third order and n -th order. Our results make up to some deficiencies in the relevant literature.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s40840-018-0653-6</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-1525-851X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0126-6705
ispartof Bulletin of the Malaysian Mathematical Sciences Society, 2019-11, Vol.42 (6), p.3187-3211
issn 0126-6705
2180-4206
language eng
recordid cdi_proquest_journals_2058282797
source SpringerNature Journals
subjects Applications of Mathematics
Differential equations
Mathematical analysis
Mathematics
Mathematics and Statistics
Stability
title A General Method for the Ulam Stability of Linear Differential Equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A21%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20General%20Method%20for%20the%20Ulam%20Stability%20of%20Linear%20Differential%20Equations&rft.jtitle=Bulletin%20of%20the%20Malaysian%20Mathematical%20Sciences%20Society&rft.au=Shen,%20Yonghong&rft.date=2019-11-15&rft.volume=42&rft.issue=6&rft.spage=3187&rft.epage=3211&rft.pages=3187-3211&rft.issn=0126-6705&rft.eissn=2180-4206&rft_id=info:doi/10.1007/s40840-018-0653-6&rft_dat=%3Cproquest_cross%3E2058282797%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2058282797&rft_id=info:pmid/&rfr_iscdi=true