A General Method for the Ulam Stability of Linear Differential Equations
This paper deals with the Ulam stability of linear differential equations by using the method of variation of parameters, which provides a unified method to study the Ulam stability problem of linear differential equations of n -th order with constant and nonconstant coefficients. As an application...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Malaysian Mathematical Sciences Society 2019-11, Vol.42 (6), p.3187-3211 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3211 |
---|---|
container_issue | 6 |
container_start_page | 3187 |
container_title | Bulletin of the Malaysian Mathematical Sciences Society |
container_volume | 42 |
creator | Shen, Yonghong Li, Yongjin |
description | This paper deals with the Ulam stability of linear differential equations by using the method of variation of parameters, which provides a unified method to study the Ulam stability problem of linear differential equations of
n
-th order with constant and nonconstant coefficients. As an application of the main results, we also obtain the Hyers–Ulam stability of the Cauchy–Euler differential equations of second order, third order and
n
-th order. Our results make up to some deficiencies in the relevant literature. |
doi_str_mv | 10.1007/s40840-018-0653-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2058282797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2058282797</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-55e42490c2cc829491564e0a576bc7e8f6ff3c4d4a5d9de78bffddfd58da2f63</originalsourceid><addsrcrecordid>eNp1kMFOAjEURRujiUT5AHdNXFdfO22nsySIYIJxIa6bMn2VITADbVnw9w4ZE1e-zd3cc19yCHng8MQByuckwUhgwA0DrQqmr8hIcANMCtDXZARcaKZLULdknNIW-lNaaMFHZDGhc2wxuh19x7zpPA1dpHmD9Gvn9vQzu3Wza_KZdoEumxZdpC9NCBixzU0PzY4nl5uuTffkJrhdwvFv3pHV62w1XbDlx_xtOlmyujAiM6VQCllBLeraiEpWXGmJ4FSp13WJJugQilp66ZSvPJZmHYL3wSvjnQi6uCOPw-whdscTpmy33Sm2_UcrQBlhRFmVfYsPrTp2KUUM9hCbvYtny8FelNlBme2V2Ysye1kWA5P6bvuN8W_5f-gHkJ9ttA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2058282797</pqid></control><display><type>article</type><title>A General Method for the Ulam Stability of Linear Differential Equations</title><source>SpringerNature Journals</source><creator>Shen, Yonghong ; Li, Yongjin</creator><creatorcontrib>Shen, Yonghong ; Li, Yongjin</creatorcontrib><description>This paper deals with the Ulam stability of linear differential equations by using the method of variation of parameters, which provides a unified method to study the Ulam stability problem of linear differential equations of
n
-th order with constant and nonconstant coefficients. As an application of the main results, we also obtain the Hyers–Ulam stability of the Cauchy–Euler differential equations of second order, third order and
n
-th order. Our results make up to some deficiencies in the relevant literature.</description><identifier>ISSN: 0126-6705</identifier><identifier>EISSN: 2180-4206</identifier><identifier>DOI: 10.1007/s40840-018-0653-6</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Applications of Mathematics ; Differential equations ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Stability</subject><ispartof>Bulletin of the Malaysian Mathematical Sciences Society, 2019-11, Vol.42 (6), p.3187-3211</ispartof><rights>Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2018</rights><rights>Bulletin of the Malaysian Mathematical Sciences Society is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-55e42490c2cc829491564e0a576bc7e8f6ff3c4d4a5d9de78bffddfd58da2f63</citedby><cites>FETCH-LOGICAL-c382t-55e42490c2cc829491564e0a576bc7e8f6ff3c4d4a5d9de78bffddfd58da2f63</cites><orcidid>0000-0002-1525-851X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40840-018-0653-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40840-018-0653-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Shen, Yonghong</creatorcontrib><creatorcontrib>Li, Yongjin</creatorcontrib><title>A General Method for the Ulam Stability of Linear Differential Equations</title><title>Bulletin of the Malaysian Mathematical Sciences Society</title><addtitle>Bull. Malays. Math. Sci. Soc</addtitle><description>This paper deals with the Ulam stability of linear differential equations by using the method of variation of parameters, which provides a unified method to study the Ulam stability problem of linear differential equations of
n
-th order with constant and nonconstant coefficients. As an application of the main results, we also obtain the Hyers–Ulam stability of the Cauchy–Euler differential equations of second order, third order and
n
-th order. Our results make up to some deficiencies in the relevant literature.</description><subject>Applications of Mathematics</subject><subject>Differential equations</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Stability</subject><issn>0126-6705</issn><issn>2180-4206</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kMFOAjEURRujiUT5AHdNXFdfO22nsySIYIJxIa6bMn2VITADbVnw9w4ZE1e-zd3cc19yCHng8MQByuckwUhgwA0DrQqmr8hIcANMCtDXZARcaKZLULdknNIW-lNaaMFHZDGhc2wxuh19x7zpPA1dpHmD9Gvn9vQzu3Wza_KZdoEumxZdpC9NCBixzU0PzY4nl5uuTffkJrhdwvFv3pHV62w1XbDlx_xtOlmyujAiM6VQCllBLeraiEpWXGmJ4FSp13WJJugQilp66ZSvPJZmHYL3wSvjnQi6uCOPw-whdscTpmy33Sm2_UcrQBlhRFmVfYsPrTp2KUUM9hCbvYtny8FelNlBme2V2Ysye1kWA5P6bvuN8W_5f-gHkJ9ttA</recordid><startdate>20191115</startdate><enddate>20191115</enddate><creator>Shen, Yonghong</creator><creator>Li, Yongjin</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-1525-851X</orcidid></search><sort><creationdate>20191115</creationdate><title>A General Method for the Ulam Stability of Linear Differential Equations</title><author>Shen, Yonghong ; Li, Yongjin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-55e42490c2cc829491564e0a576bc7e8f6ff3c4d4a5d9de78bffddfd58da2f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applications of Mathematics</topic><topic>Differential equations</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Yonghong</creatorcontrib><creatorcontrib>Li, Yongjin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East & South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Bulletin of the Malaysian Mathematical Sciences Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Yonghong</au><au>Li, Yongjin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A General Method for the Ulam Stability of Linear Differential Equations</atitle><jtitle>Bulletin of the Malaysian Mathematical Sciences Society</jtitle><stitle>Bull. Malays. Math. Sci. Soc</stitle><date>2019-11-15</date><risdate>2019</risdate><volume>42</volume><issue>6</issue><spage>3187</spage><epage>3211</epage><pages>3187-3211</pages><issn>0126-6705</issn><eissn>2180-4206</eissn><abstract>This paper deals with the Ulam stability of linear differential equations by using the method of variation of parameters, which provides a unified method to study the Ulam stability problem of linear differential equations of
n
-th order with constant and nonconstant coefficients. As an application of the main results, we also obtain the Hyers–Ulam stability of the Cauchy–Euler differential equations of second order, third order and
n
-th order. Our results make up to some deficiencies in the relevant literature.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s40840-018-0653-6</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-1525-851X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0126-6705 |
ispartof | Bulletin of the Malaysian Mathematical Sciences Society, 2019-11, Vol.42 (6), p.3187-3211 |
issn | 0126-6705 2180-4206 |
language | eng |
recordid | cdi_proquest_journals_2058282797 |
source | SpringerNature Journals |
subjects | Applications of Mathematics Differential equations Mathematical analysis Mathematics Mathematics and Statistics Stability |
title | A General Method for the Ulam Stability of Linear Differential Equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A21%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20General%20Method%20for%20the%20Ulam%20Stability%20of%20Linear%20Differential%20Equations&rft.jtitle=Bulletin%20of%20the%20Malaysian%20Mathematical%20Sciences%20Society&rft.au=Shen,%20Yonghong&rft.date=2019-11-15&rft.volume=42&rft.issue=6&rft.spage=3187&rft.epage=3211&rft.pages=3187-3211&rft.issn=0126-6705&rft.eissn=2180-4206&rft_id=info:doi/10.1007/s40840-018-0653-6&rft_dat=%3Cproquest_cross%3E2058282797%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2058282797&rft_id=info:pmid/&rfr_iscdi=true |