Duality for unbounded order convergence and applications

Unbounded order convergence has lately been systematically studied as a generalization of almost everywhere convergence to the abstract setting of vector and Banach lattices. This paper presents a duality theory for unbounded order convergence. We define the unbounded order dual (or uo-dual) X u o ∼...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Positivity : an international journal devoted to the theory and applications of positivity in analysis 2018-07, Vol.22 (3), p.711-725
Hauptverfasser: Gao, Niushan, Leung, Denny H., Xanthos, Foivos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 725
container_issue 3
container_start_page 711
container_title Positivity : an international journal devoted to the theory and applications of positivity in analysis
container_volume 22
creator Gao, Niushan
Leung, Denny H.
Xanthos, Foivos
description Unbounded order convergence has lately been systematically studied as a generalization of almost everywhere convergence to the abstract setting of vector and Banach lattices. This paper presents a duality theory for unbounded order convergence. We define the unbounded order dual (or uo-dual) X u o ∼ of a Banach lattice X and identify it as the order continuous part of the order continuous dual X n ∼ . The result allows us to characterize the Banach lattices that have order continuous preduals and to show that an order continuous predual is unique when it exists. Applications to the Fenchel–Moreau duality theory of convex functionals are given. The applications are of interest in the theory of risk measures in Mathematical Finance.
doi_str_mv 10.1007/s11117-017-0539-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2058249546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2058249546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-333c5eab06c0a0ee9fea13c04368d26c3f834516f2df52bef780b4d0ca21dc903</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcF19GbpGmTpYxPGHCj65DmMXQYk5q0wvx7Uyq48sLh3sU534WD0DWBWwLQ3mVSpsUwizOJ4QStCG8pllSQ03IzwTGhkp6ji5z3ACVVwwqJh0kf-vFY-ZiqKXRxCtbZKibrUmVi-HZp54JxlQ620sNw6I0e-xjyJTrz-pDd1e9eo4-nx_fNC96-Pb9u7rfYMC5HzBgz3OkOGgManJPeacIM1KwRljaGecFqThpPree0c74V0NUWjKbEGglsjW4W7pDi1-TyqPZxSqG8VBS4oLXkdVNcZHGZFHNOzqsh9Z86HRUBNRekloIUzCoFqZlMl0wu3rBz6Y_8f-gHYLpoIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2058249546</pqid></control><display><type>article</type><title>Duality for unbounded order convergence and applications</title><source>Business Source Complete</source><source>SpringerNature Complete Journals</source><creator>Gao, Niushan ; Leung, Denny H. ; Xanthos, Foivos</creator><creatorcontrib>Gao, Niushan ; Leung, Denny H. ; Xanthos, Foivos</creatorcontrib><description>Unbounded order convergence has lately been systematically studied as a generalization of almost everywhere convergence to the abstract setting of vector and Banach lattices. This paper presents a duality theory for unbounded order convergence. We define the unbounded order dual (or uo-dual) X u o ∼ of a Banach lattice X and identify it as the order continuous part of the order continuous dual X n ∼ . The result allows us to characterize the Banach lattices that have order continuous preduals and to show that an order continuous predual is unique when it exists. Applications to the Fenchel–Moreau duality theory of convex functionals are given. The applications are of interest in the theory of risk measures in Mathematical Finance.</description><identifier>ISSN: 1385-1292</identifier><identifier>EISSN: 1572-9281</identifier><identifier>DOI: 10.1007/s11117-017-0539-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Calculus of Variations and Optimal Control; Optimization ; Convergence ; Econometrics ; Fourier Analysis ; Functionals ; Lattices (mathematics) ; Mathematics ; Mathematics and Statistics ; Operator Theory ; Potential Theory</subject><ispartof>Positivity : an international journal devoted to the theory and applications of positivity in analysis, 2018-07, Vol.22 (3), p.711-725</ispartof><rights>Springer International Publishing AG 2017</rights><rights>Positivity is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-333c5eab06c0a0ee9fea13c04368d26c3f834516f2df52bef780b4d0ca21dc903</citedby><cites>FETCH-LOGICAL-c359t-333c5eab06c0a0ee9fea13c04368d26c3f834516f2df52bef780b4d0ca21dc903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11117-017-0539-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11117-017-0539-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Gao, Niushan</creatorcontrib><creatorcontrib>Leung, Denny H.</creatorcontrib><creatorcontrib>Xanthos, Foivos</creatorcontrib><title>Duality for unbounded order convergence and applications</title><title>Positivity : an international journal devoted to the theory and applications of positivity in analysis</title><addtitle>Positivity</addtitle><description>Unbounded order convergence has lately been systematically studied as a generalization of almost everywhere convergence to the abstract setting of vector and Banach lattices. This paper presents a duality theory for unbounded order convergence. We define the unbounded order dual (or uo-dual) X u o ∼ of a Banach lattice X and identify it as the order continuous part of the order continuous dual X n ∼ . The result allows us to characterize the Banach lattices that have order continuous preduals and to show that an order continuous predual is unique when it exists. Applications to the Fenchel–Moreau duality theory of convex functionals are given. The applications are of interest in the theory of risk measures in Mathematical Finance.</description><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Convergence</subject><subject>Econometrics</subject><subject>Fourier Analysis</subject><subject>Functionals</subject><subject>Lattices (mathematics)</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operator Theory</subject><subject>Potential Theory</subject><issn>1385-1292</issn><issn>1572-9281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEtLxDAUhYMoOI7-AHcF19GbpGmTpYxPGHCj65DmMXQYk5q0wvx7Uyq48sLh3sU534WD0DWBWwLQ3mVSpsUwizOJ4QStCG8pllSQ03IzwTGhkp6ji5z3ACVVwwqJh0kf-vFY-ZiqKXRxCtbZKibrUmVi-HZp54JxlQ620sNw6I0e-xjyJTrz-pDd1e9eo4-nx_fNC96-Pb9u7rfYMC5HzBgz3OkOGgManJPeacIM1KwRljaGecFqThpPree0c74V0NUWjKbEGglsjW4W7pDi1-TyqPZxSqG8VBS4oLXkdVNcZHGZFHNOzqsh9Z86HRUBNRekloIUzCoFqZlMl0wu3rBz6Y_8f-gHYLpoIw</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Gao, Niushan</creator><creator>Leung, Denny H.</creator><creator>Xanthos, Foivos</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20180701</creationdate><title>Duality for unbounded order convergence and applications</title><author>Gao, Niushan ; Leung, Denny H. ; Xanthos, Foivos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-333c5eab06c0a0ee9fea13c04368d26c3f834516f2df52bef780b4d0ca21dc903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Convergence</topic><topic>Econometrics</topic><topic>Fourier Analysis</topic><topic>Functionals</topic><topic>Lattices (mathematics)</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operator Theory</topic><topic>Potential Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Niushan</creatorcontrib><creatorcontrib>Leung, Denny H.</creatorcontrib><creatorcontrib>Xanthos, Foivos</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Positivity : an international journal devoted to the theory and applications of positivity in analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Niushan</au><au>Leung, Denny H.</au><au>Xanthos, Foivos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Duality for unbounded order convergence and applications</atitle><jtitle>Positivity : an international journal devoted to the theory and applications of positivity in analysis</jtitle><stitle>Positivity</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>22</volume><issue>3</issue><spage>711</spage><epage>725</epage><pages>711-725</pages><issn>1385-1292</issn><eissn>1572-9281</eissn><abstract>Unbounded order convergence has lately been systematically studied as a generalization of almost everywhere convergence to the abstract setting of vector and Banach lattices. This paper presents a duality theory for unbounded order convergence. We define the unbounded order dual (or uo-dual) X u o ∼ of a Banach lattice X and identify it as the order continuous part of the order continuous dual X n ∼ . The result allows us to characterize the Banach lattices that have order continuous preduals and to show that an order continuous predual is unique when it exists. Applications to the Fenchel–Moreau duality theory of convex functionals are given. The applications are of interest in the theory of risk measures in Mathematical Finance.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11117-017-0539-0</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1385-1292
ispartof Positivity : an international journal devoted to the theory and applications of positivity in analysis, 2018-07, Vol.22 (3), p.711-725
issn 1385-1292
1572-9281
language eng
recordid cdi_proquest_journals_2058249546
source Business Source Complete; SpringerNature Complete Journals
subjects Calculus of Variations and Optimal Control
Optimization
Convergence
Econometrics
Fourier Analysis
Functionals
Lattices (mathematics)
Mathematics
Mathematics and Statistics
Operator Theory
Potential Theory
title Duality for unbounded order convergence and applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A04%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Duality%20for%20unbounded%20order%20convergence%20and%20applications&rft.jtitle=Positivity%20:%20an%20international%20journal%20devoted%20to%20the%20theory%20and%20applications%20of%20positivity%20in%20analysis&rft.au=Gao,%20Niushan&rft.date=2018-07-01&rft.volume=22&rft.issue=3&rft.spage=711&rft.epage=725&rft.pages=711-725&rft.issn=1385-1292&rft.eissn=1572-9281&rft_id=info:doi/10.1007/s11117-017-0539-0&rft_dat=%3Cproquest_cross%3E2058249546%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2058249546&rft_id=info:pmid/&rfr_iscdi=true