Duality for unbounded order convergence and applications
Unbounded order convergence has lately been systematically studied as a generalization of almost everywhere convergence to the abstract setting of vector and Banach lattices. This paper presents a duality theory for unbounded order convergence. We define the unbounded order dual (or uo-dual) X u o ∼...
Gespeichert in:
Veröffentlicht in: | Positivity : an international journal devoted to the theory and applications of positivity in analysis 2018-07, Vol.22 (3), p.711-725 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 725 |
---|---|
container_issue | 3 |
container_start_page | 711 |
container_title | Positivity : an international journal devoted to the theory and applications of positivity in analysis |
container_volume | 22 |
creator | Gao, Niushan Leung, Denny H. Xanthos, Foivos |
description | Unbounded order convergence has lately been systematically studied as a generalization of almost everywhere convergence to the abstract setting of vector and Banach lattices. This paper presents a duality theory for unbounded order convergence. We define the unbounded order dual (or uo-dual)
X
u
o
∼
of a Banach lattice
X
and identify it as the order continuous part of the order continuous dual
X
n
∼
. The result allows us to characterize the Banach lattices that have order continuous preduals and to show that an order continuous predual is unique when it exists. Applications to the Fenchel–Moreau duality theory of convex functionals are given. The applications are of interest in the theory of risk measures in Mathematical Finance. |
doi_str_mv | 10.1007/s11117-017-0539-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2058249546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2058249546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-333c5eab06c0a0ee9fea13c04368d26c3f834516f2df52bef780b4d0ca21dc903</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcF19GbpGmTpYxPGHCj65DmMXQYk5q0wvx7Uyq48sLh3sU534WD0DWBWwLQ3mVSpsUwizOJ4QStCG8pllSQ03IzwTGhkp6ji5z3ACVVwwqJh0kf-vFY-ZiqKXRxCtbZKibrUmVi-HZp54JxlQ620sNw6I0e-xjyJTrz-pDd1e9eo4-nx_fNC96-Pb9u7rfYMC5HzBgz3OkOGgManJPeacIM1KwRljaGecFqThpPree0c74V0NUWjKbEGglsjW4W7pDi1-TyqPZxSqG8VBS4oLXkdVNcZHGZFHNOzqsh9Z86HRUBNRekloIUzCoFqZlMl0wu3rBz6Y_8f-gHYLpoIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2058249546</pqid></control><display><type>article</type><title>Duality for unbounded order convergence and applications</title><source>Business Source Complete</source><source>SpringerNature Complete Journals</source><creator>Gao, Niushan ; Leung, Denny H. ; Xanthos, Foivos</creator><creatorcontrib>Gao, Niushan ; Leung, Denny H. ; Xanthos, Foivos</creatorcontrib><description>Unbounded order convergence has lately been systematically studied as a generalization of almost everywhere convergence to the abstract setting of vector and Banach lattices. This paper presents a duality theory for unbounded order convergence. We define the unbounded order dual (or uo-dual)
X
u
o
∼
of a Banach lattice
X
and identify it as the order continuous part of the order continuous dual
X
n
∼
. The result allows us to characterize the Banach lattices that have order continuous preduals and to show that an order continuous predual is unique when it exists. Applications to the Fenchel–Moreau duality theory of convex functionals are given. The applications are of interest in the theory of risk measures in Mathematical Finance.</description><identifier>ISSN: 1385-1292</identifier><identifier>EISSN: 1572-9281</identifier><identifier>DOI: 10.1007/s11117-017-0539-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Calculus of Variations and Optimal Control; Optimization ; Convergence ; Econometrics ; Fourier Analysis ; Functionals ; Lattices (mathematics) ; Mathematics ; Mathematics and Statistics ; Operator Theory ; Potential Theory</subject><ispartof>Positivity : an international journal devoted to the theory and applications of positivity in analysis, 2018-07, Vol.22 (3), p.711-725</ispartof><rights>Springer International Publishing AG 2017</rights><rights>Positivity is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-333c5eab06c0a0ee9fea13c04368d26c3f834516f2df52bef780b4d0ca21dc903</citedby><cites>FETCH-LOGICAL-c359t-333c5eab06c0a0ee9fea13c04368d26c3f834516f2df52bef780b4d0ca21dc903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11117-017-0539-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11117-017-0539-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Gao, Niushan</creatorcontrib><creatorcontrib>Leung, Denny H.</creatorcontrib><creatorcontrib>Xanthos, Foivos</creatorcontrib><title>Duality for unbounded order convergence and applications</title><title>Positivity : an international journal devoted to the theory and applications of positivity in analysis</title><addtitle>Positivity</addtitle><description>Unbounded order convergence has lately been systematically studied as a generalization of almost everywhere convergence to the abstract setting of vector and Banach lattices. This paper presents a duality theory for unbounded order convergence. We define the unbounded order dual (or uo-dual)
X
u
o
∼
of a Banach lattice
X
and identify it as the order continuous part of the order continuous dual
X
n
∼
. The result allows us to characterize the Banach lattices that have order continuous preduals and to show that an order continuous predual is unique when it exists. Applications to the Fenchel–Moreau duality theory of convex functionals are given. The applications are of interest in the theory of risk measures in Mathematical Finance.</description><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Convergence</subject><subject>Econometrics</subject><subject>Fourier Analysis</subject><subject>Functionals</subject><subject>Lattices (mathematics)</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operator Theory</subject><subject>Potential Theory</subject><issn>1385-1292</issn><issn>1572-9281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEtLxDAUhYMoOI7-AHcF19GbpGmTpYxPGHCj65DmMXQYk5q0wvx7Uyq48sLh3sU534WD0DWBWwLQ3mVSpsUwizOJ4QStCG8pllSQ03IzwTGhkp6ji5z3ACVVwwqJh0kf-vFY-ZiqKXRxCtbZKibrUmVi-HZp54JxlQ620sNw6I0e-xjyJTrz-pDd1e9eo4-nx_fNC96-Pb9u7rfYMC5HzBgz3OkOGgManJPeacIM1KwRljaGecFqThpPree0c74V0NUWjKbEGglsjW4W7pDi1-TyqPZxSqG8VBS4oLXkdVNcZHGZFHNOzqsh9Z86HRUBNRekloIUzCoFqZlMl0wu3rBz6Y_8f-gHYLpoIw</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Gao, Niushan</creator><creator>Leung, Denny H.</creator><creator>Xanthos, Foivos</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20180701</creationdate><title>Duality for unbounded order convergence and applications</title><author>Gao, Niushan ; Leung, Denny H. ; Xanthos, Foivos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-333c5eab06c0a0ee9fea13c04368d26c3f834516f2df52bef780b4d0ca21dc903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Convergence</topic><topic>Econometrics</topic><topic>Fourier Analysis</topic><topic>Functionals</topic><topic>Lattices (mathematics)</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operator Theory</topic><topic>Potential Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Niushan</creatorcontrib><creatorcontrib>Leung, Denny H.</creatorcontrib><creatorcontrib>Xanthos, Foivos</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Positivity : an international journal devoted to the theory and applications of positivity in analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Niushan</au><au>Leung, Denny H.</au><au>Xanthos, Foivos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Duality for unbounded order convergence and applications</atitle><jtitle>Positivity : an international journal devoted to the theory and applications of positivity in analysis</jtitle><stitle>Positivity</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>22</volume><issue>3</issue><spage>711</spage><epage>725</epage><pages>711-725</pages><issn>1385-1292</issn><eissn>1572-9281</eissn><abstract>Unbounded order convergence has lately been systematically studied as a generalization of almost everywhere convergence to the abstract setting of vector and Banach lattices. This paper presents a duality theory for unbounded order convergence. We define the unbounded order dual (or uo-dual)
X
u
o
∼
of a Banach lattice
X
and identify it as the order continuous part of the order continuous dual
X
n
∼
. The result allows us to characterize the Banach lattices that have order continuous preduals and to show that an order continuous predual is unique when it exists. Applications to the Fenchel–Moreau duality theory of convex functionals are given. The applications are of interest in the theory of risk measures in Mathematical Finance.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11117-017-0539-0</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1385-1292 |
ispartof | Positivity : an international journal devoted to the theory and applications of positivity in analysis, 2018-07, Vol.22 (3), p.711-725 |
issn | 1385-1292 1572-9281 |
language | eng |
recordid | cdi_proquest_journals_2058249546 |
source | Business Source Complete; SpringerNature Complete Journals |
subjects | Calculus of Variations and Optimal Control Optimization Convergence Econometrics Fourier Analysis Functionals Lattices (mathematics) Mathematics Mathematics and Statistics Operator Theory Potential Theory |
title | Duality for unbounded order convergence and applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A04%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Duality%20for%20unbounded%20order%20convergence%20and%20applications&rft.jtitle=Positivity%20:%20an%20international%20journal%20devoted%20to%20the%20theory%20and%20applications%20of%20positivity%20in%20analysis&rft.au=Gao,%20Niushan&rft.date=2018-07-01&rft.volume=22&rft.issue=3&rft.spage=711&rft.epage=725&rft.pages=711-725&rft.issn=1385-1292&rft.eissn=1572-9281&rft_id=info:doi/10.1007/s11117-017-0539-0&rft_dat=%3Cproquest_cross%3E2058249546%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2058249546&rft_id=info:pmid/&rfr_iscdi=true |