IoT-based occupancy detection system in indoor residential environments

We propose an Internet of Things (IoT)-based occupancy detection system using change patterns of dust concentrations such as particulate matter. Previous research studies have used other features such as visual, chemical, or acoustic data. In this paper, the point extraction algorithm is proposed to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Building and environment 2018-03, Vol.132, p.181-204
Hauptverfasser: Jeon, Yunwan, Cho, Chanho, Seo, Jongwoo, Kwon, Kyunglag, Park, Hansaem, Oh, Seungkeun, Chung, In-Jeong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 204
container_issue
container_start_page 181
container_title Building and environment
container_volume 132
creator Jeon, Yunwan
Cho, Chanho
Seo, Jongwoo
Kwon, Kyunglag
Park, Hansaem
Oh, Seungkeun
Chung, In-Jeong
description We propose an Internet of Things (IoT)-based occupancy detection system using change patterns of dust concentrations such as particulate matter. Previous research studies have used other features such as visual, chemical, or acoustic data. In this paper, the point extraction algorithm is proposed to construct triangular shapes, and their properties are used to detect occupancy in an indoor environment. For the verification of the proposed method, an IoT-based system is implemented for the occupancy detection in real residential environments. Finally, we analyze the experimental results, and compare them with those of other conventional approaches from a qualitative point of view.
doi_str_mv 10.1016/j.buildenv.2018.01.043
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2057969991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360132318300611</els_id><sourcerecordid>2057969991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-b69d1b054d9f0419e6e7ef7ed319a466fd63dcd26d9c858c904e27a39982a7453</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKd_QQpetyZNmjR3ytA5GHgzwbuQJqeQsiUzaQf792ZsXgsHDgfeD86D0CPBFcGEPw9VN7mtBX-oakzaCpMKM3qFZqQVtOQt-75GM0w5Lgmt6S26S2nA2Sgpm6HlKmzKTiewRTBm2mtvjoWFEczogi_SMY2wK5zPY0OIRYTkctXo9LbIjS4Gv8tnukc3vd4meLjsOfp6f9ssPsr153K1eF2Xhgo5lh2XlnS4YVb2mBEJHAT0AiwlUjPOe8upNbbmVpq2aY3EDGqhqZRtrQVr6Bw9nXP3MfxMkEY1hCn6XKlq3AjJpZQkq_hZZWJIKUKv9tHtdDwqgtUJmhrUHzR1gqYwURlaNr6cjZB_ODiIKhkH3oB1MSNRNrj_In4Bfhp5wg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2057969991</pqid></control><display><type>article</type><title>IoT-based occupancy detection system in indoor residential environments</title><source>Elsevier ScienceDirect Journals</source><creator>Jeon, Yunwan ; Cho, Chanho ; Seo, Jongwoo ; Kwon, Kyunglag ; Park, Hansaem ; Oh, Seungkeun ; Chung, In-Jeong</creator><creatorcontrib>Jeon, Yunwan ; Cho, Chanho ; Seo, Jongwoo ; Kwon, Kyunglag ; Park, Hansaem ; Oh, Seungkeun ; Chung, In-Jeong</creatorcontrib><description>We propose an Internet of Things (IoT)-based occupancy detection system using change patterns of dust concentrations such as particulate matter. Previous research studies have used other features such as visual, chemical, or acoustic data. In this paper, the point extraction algorithm is proposed to construct triangular shapes, and their properties are used to detect occupancy in an indoor environment. For the verification of the proposed method, an IoT-based system is implemented for the occupancy detection in real residential environments. Finally, we analyze the experimental results, and compare them with those of other conventional approaches from a qualitative point of view.</description><identifier>ISSN: 0360-1323</identifier><identifier>EISSN: 1873-684X</identifier><identifier>DOI: 10.1016/j.buildenv.2018.01.043</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Airborne particulates ; Change detection ; Data processing ; Indoor air quality ; Indoor environments ; Indoor residential environment ; Information systems ; Intelligent information systems ; Internet of Things ; Occupancy detection ; Occupancy rates ; Organic chemistry ; Particulate emissions ; Particulate matter ; Pattern analysis ; Sensor data ; Shape recognition</subject><ispartof>Building and environment, 2018-03, Vol.132, p.181-204</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 15, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-b69d1b054d9f0419e6e7ef7ed319a466fd63dcd26d9c858c904e27a39982a7453</citedby><cites>FETCH-LOGICAL-c379t-b69d1b054d9f0419e6e7ef7ed319a466fd63dcd26d9c858c904e27a39982a7453</cites><orcidid>0000-0002-5020-8921</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360132318300611$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Jeon, Yunwan</creatorcontrib><creatorcontrib>Cho, Chanho</creatorcontrib><creatorcontrib>Seo, Jongwoo</creatorcontrib><creatorcontrib>Kwon, Kyunglag</creatorcontrib><creatorcontrib>Park, Hansaem</creatorcontrib><creatorcontrib>Oh, Seungkeun</creatorcontrib><creatorcontrib>Chung, In-Jeong</creatorcontrib><title>IoT-based occupancy detection system in indoor residential environments</title><title>Building and environment</title><description>We propose an Internet of Things (IoT)-based occupancy detection system using change patterns of dust concentrations such as particulate matter. Previous research studies have used other features such as visual, chemical, or acoustic data. In this paper, the point extraction algorithm is proposed to construct triangular shapes, and their properties are used to detect occupancy in an indoor environment. For the verification of the proposed method, an IoT-based system is implemented for the occupancy detection in real residential environments. Finally, we analyze the experimental results, and compare them with those of other conventional approaches from a qualitative point of view.</description><subject>Airborne particulates</subject><subject>Change detection</subject><subject>Data processing</subject><subject>Indoor air quality</subject><subject>Indoor environments</subject><subject>Indoor residential environment</subject><subject>Information systems</subject><subject>Intelligent information systems</subject><subject>Internet of Things</subject><subject>Occupancy detection</subject><subject>Occupancy rates</subject><subject>Organic chemistry</subject><subject>Particulate emissions</subject><subject>Particulate matter</subject><subject>Pattern analysis</subject><subject>Sensor data</subject><subject>Shape recognition</subject><issn>0360-1323</issn><issn>1873-684X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkF1LwzAUhoMoOKd_QQpetyZNmjR3ytA5GHgzwbuQJqeQsiUzaQf792ZsXgsHDgfeD86D0CPBFcGEPw9VN7mtBX-oakzaCpMKM3qFZqQVtOQt-75GM0w5Lgmt6S26S2nA2Sgpm6HlKmzKTiewRTBm2mtvjoWFEczogi_SMY2wK5zPY0OIRYTkctXo9LbIjS4Gv8tnukc3vd4meLjsOfp6f9ssPsr153K1eF2Xhgo5lh2XlnS4YVb2mBEJHAT0AiwlUjPOe8upNbbmVpq2aY3EDGqhqZRtrQVr6Bw9nXP3MfxMkEY1hCn6XKlq3AjJpZQkq_hZZWJIKUKv9tHtdDwqgtUJmhrUHzR1gqYwURlaNr6cjZB_ODiIKhkH3oB1MSNRNrj_In4Bfhp5wg</recordid><startdate>20180315</startdate><enddate>20180315</enddate><creator>Jeon, Yunwan</creator><creator>Cho, Chanho</creator><creator>Seo, Jongwoo</creator><creator>Kwon, Kyunglag</creator><creator>Park, Hansaem</creator><creator>Oh, Seungkeun</creator><creator>Chung, In-Jeong</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-5020-8921</orcidid></search><sort><creationdate>20180315</creationdate><title>IoT-based occupancy detection system in indoor residential environments</title><author>Jeon, Yunwan ; Cho, Chanho ; Seo, Jongwoo ; Kwon, Kyunglag ; Park, Hansaem ; Oh, Seungkeun ; Chung, In-Jeong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-b69d1b054d9f0419e6e7ef7ed319a466fd63dcd26d9c858c904e27a39982a7453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Airborne particulates</topic><topic>Change detection</topic><topic>Data processing</topic><topic>Indoor air quality</topic><topic>Indoor environments</topic><topic>Indoor residential environment</topic><topic>Information systems</topic><topic>Intelligent information systems</topic><topic>Internet of Things</topic><topic>Occupancy detection</topic><topic>Occupancy rates</topic><topic>Organic chemistry</topic><topic>Particulate emissions</topic><topic>Particulate matter</topic><topic>Pattern analysis</topic><topic>Sensor data</topic><topic>Shape recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeon, Yunwan</creatorcontrib><creatorcontrib>Cho, Chanho</creatorcontrib><creatorcontrib>Seo, Jongwoo</creatorcontrib><creatorcontrib>Kwon, Kyunglag</creatorcontrib><creatorcontrib>Park, Hansaem</creatorcontrib><creatorcontrib>Oh, Seungkeun</creatorcontrib><creatorcontrib>Chung, In-Jeong</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Building and environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeon, Yunwan</au><au>Cho, Chanho</au><au>Seo, Jongwoo</au><au>Kwon, Kyunglag</au><au>Park, Hansaem</au><au>Oh, Seungkeun</au><au>Chung, In-Jeong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IoT-based occupancy detection system in indoor residential environments</atitle><jtitle>Building and environment</jtitle><date>2018-03-15</date><risdate>2018</risdate><volume>132</volume><spage>181</spage><epage>204</epage><pages>181-204</pages><issn>0360-1323</issn><eissn>1873-684X</eissn><abstract>We propose an Internet of Things (IoT)-based occupancy detection system using change patterns of dust concentrations such as particulate matter. Previous research studies have used other features such as visual, chemical, or acoustic data. In this paper, the point extraction algorithm is proposed to construct triangular shapes, and their properties are used to detect occupancy in an indoor environment. For the verification of the proposed method, an IoT-based system is implemented for the occupancy detection in real residential environments. Finally, we analyze the experimental results, and compare them with those of other conventional approaches from a qualitative point of view.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.buildenv.2018.01.043</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-5020-8921</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0360-1323
ispartof Building and environment, 2018-03, Vol.132, p.181-204
issn 0360-1323
1873-684X
language eng
recordid cdi_proquest_journals_2057969991
source Elsevier ScienceDirect Journals
subjects Airborne particulates
Change detection
Data processing
Indoor air quality
Indoor environments
Indoor residential environment
Information systems
Intelligent information systems
Internet of Things
Occupancy detection
Occupancy rates
Organic chemistry
Particulate emissions
Particulate matter
Pattern analysis
Sensor data
Shape recognition
title IoT-based occupancy detection system in indoor residential environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A09%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IoT-based%20occupancy%20detection%20system%20in%20indoor%20residential%20environments&rft.jtitle=Building%20and%20environment&rft.au=Jeon,%20Yunwan&rft.date=2018-03-15&rft.volume=132&rft.spage=181&rft.epage=204&rft.pages=181-204&rft.issn=0360-1323&rft.eissn=1873-684X&rft_id=info:doi/10.1016/j.buildenv.2018.01.043&rft_dat=%3Cproquest_cross%3E2057969991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2057969991&rft_id=info:pmid/&rft_els_id=S0360132318300611&rfr_iscdi=true