Adaptive-model predictive control of electronic expansion valves with adjustable setpoint for evaporator superheat minimization

In many refrigeration and air-conditioning systems, the automatic controller in electronic expansion valves have been employed as a component responsible for controlling the valve opening so that the superheat at the outlet of the evaporator remains within the desired limits. In some of these contro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Building and environment 2018-04, Vol.133, p.151-160
Hauptverfasser: Tesfay, Mehari, Alsaleem, Fadi, Arunasalam, Parthiban, Rao, Arvind
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 160
container_issue
container_start_page 151
container_title Building and environment
container_volume 133
creator Tesfay, Mehari
Alsaleem, Fadi
Arunasalam, Parthiban
Rao, Arvind
description In many refrigeration and air-conditioning systems, the automatic controller in electronic expansion valves have been employed as a component responsible for controlling the valve opening so that the superheat at the outlet of the evaporator remains within the desired limits. In some of these controllers, the control parameters are tuned once for a certain operating point and remain unaltered, even when the operating conditions change, unless the operator changes it manually. For a strongly nonlinear plant with a dramatically time varying characteristics, linear time invariant (LTI) prediction accuracy might degrade significantly that the performance of traditional Model Predictive Controller (MPC) becomes unacceptable. This work presents an Adaptive-Model Predictive Control (AMPC) mechanism to address this degradation where the parameters are tuned continuously through recursive estimation and update approaches, making the MPC insensitive to prediction errors and to achieve the optimal superheat response. Moreover, an adaptive setpoint hunting algorithm is implemented so that the system achieves stability and improves energy efficiency simultaneously. •An online adaptive-model mechanism is demonstrated to model HVAC system.•An MPC controller utilizes the adaptive model for controlling EEV valve.•A hunting algorithm for optimal superheat set point selection is designed.•High controller stability and fast response time were experimentally demonstrated.
doi_str_mv 10.1016/j.buildenv.2018.02.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2057958331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360132318300817</els_id><sourcerecordid>2057958331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-67a92a06e7c8a4eee8a51444b5fa91a763370b6904d3b4e895055858605f17d73</originalsourceid><addsrcrecordid>eNqFkEur1TAUhYMoeLz6FyTguHWneTSdebn4ggtOFJyFNN3lpvQkNUnrY-JfN4ejY0d7sVlrbfZHyEsGLQOmXi_tuPt1wnC0HTDdQtcCk4_IiemeN0qLr4_JCbiChvGOPyXPcl6gBgcuTuT37WS34g9sznHClW4JJ-8uC-piKCmuNM4UV3RVB-8o_thsyD4Getj1wEy_-_JA7bTsudhxRZqxbNGHQueYKB52i8mWKvO-YXpAW-jZB3_2v2ypLc_Jk9muGV_8nTfky7u3n-8-NPef3n-8u71vHBdQGtXbobOgsHfaCkTUVjIhxChnOzDbK857GNUAYuKjQD1IkFJLrUDOrJ96fkNeXXu3FL_tmItZ4p5CPWk6kP0gNeesutTV5VLMOeFstuTPNv00DMwFtlnMP9jmAttAZyrsGnxzDWL94fCYTHYeg6swU0Vnpuj_V_EHvB2PEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2057958331</pqid></control><display><type>article</type><title>Adaptive-model predictive control of electronic expansion valves with adjustable setpoint for evaporator superheat minimization</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Tesfay, Mehari ; Alsaleem, Fadi ; Arunasalam, Parthiban ; Rao, Arvind</creator><creatorcontrib>Tesfay, Mehari ; Alsaleem, Fadi ; Arunasalam, Parthiban ; Rao, Arvind</creatorcontrib><description>In many refrigeration and air-conditioning systems, the automatic controller in electronic expansion valves have been employed as a component responsible for controlling the valve opening so that the superheat at the outlet of the evaporator remains within the desired limits. In some of these controllers, the control parameters are tuned once for a certain operating point and remain unaltered, even when the operating conditions change, unless the operator changes it manually. For a strongly nonlinear plant with a dramatically time varying characteristics, linear time invariant (LTI) prediction accuracy might degrade significantly that the performance of traditional Model Predictive Controller (MPC) becomes unacceptable. This work presents an Adaptive-Model Predictive Control (AMPC) mechanism to address this degradation where the parameters are tuned continuously through recursive estimation and update approaches, making the MPC insensitive to prediction errors and to achieve the optimal superheat response. Moreover, an adaptive setpoint hunting algorithm is implemented so that the system achieves stability and improves energy efficiency simultaneously. •An online adaptive-model mechanism is demonstrated to model HVAC system.•An MPC controller utilizes the adaptive model for controlling EEV valve.•A hunting algorithm for optimal superheat set point selection is designed.•High controller stability and fast response time were experimentally demonstrated.</description><identifier>ISSN: 0360-1323</identifier><identifier>EISSN: 1873-684X</identifier><identifier>DOI: 10.1016/j.buildenv.2018.02.015</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Adaptive algorithms ; Adaptive control ; Adaptive-MPC ; Air conditioners ; Air conditioning ; Algorithms ; Energy efficiency ; Expansion valves ; Gas expanders ; Heat ; Hunting ; Mathematical models ; Optimization ; Parameter estimation ; Predictive control ; Recursive methods ; Refrigeration ; Setpoint algorithm ; Superheat ; Valves</subject><ispartof>Building and environment, 2018-04, Vol.133, p.151-160</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-67a92a06e7c8a4eee8a51444b5fa91a763370b6904d3b4e895055858605f17d73</citedby><cites>FETCH-LOGICAL-c340t-67a92a06e7c8a4eee8a51444b5fa91a763370b6904d3b4e895055858605f17d73</cites><orcidid>0000-0001-8134-4080</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.buildenv.2018.02.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids></links><search><creatorcontrib>Tesfay, Mehari</creatorcontrib><creatorcontrib>Alsaleem, Fadi</creatorcontrib><creatorcontrib>Arunasalam, Parthiban</creatorcontrib><creatorcontrib>Rao, Arvind</creatorcontrib><title>Adaptive-model predictive control of electronic expansion valves with adjustable setpoint for evaporator superheat minimization</title><title>Building and environment</title><description>In many refrigeration and air-conditioning systems, the automatic controller in electronic expansion valves have been employed as a component responsible for controlling the valve opening so that the superheat at the outlet of the evaporator remains within the desired limits. In some of these controllers, the control parameters are tuned once for a certain operating point and remain unaltered, even when the operating conditions change, unless the operator changes it manually. For a strongly nonlinear plant with a dramatically time varying characteristics, linear time invariant (LTI) prediction accuracy might degrade significantly that the performance of traditional Model Predictive Controller (MPC) becomes unacceptable. This work presents an Adaptive-Model Predictive Control (AMPC) mechanism to address this degradation where the parameters are tuned continuously through recursive estimation and update approaches, making the MPC insensitive to prediction errors and to achieve the optimal superheat response. Moreover, an adaptive setpoint hunting algorithm is implemented so that the system achieves stability and improves energy efficiency simultaneously. •An online adaptive-model mechanism is demonstrated to model HVAC system.•An MPC controller utilizes the adaptive model for controlling EEV valve.•A hunting algorithm for optimal superheat set point selection is designed.•High controller stability and fast response time were experimentally demonstrated.</description><subject>Adaptive algorithms</subject><subject>Adaptive control</subject><subject>Adaptive-MPC</subject><subject>Air conditioners</subject><subject>Air conditioning</subject><subject>Algorithms</subject><subject>Energy efficiency</subject><subject>Expansion valves</subject><subject>Gas expanders</subject><subject>Heat</subject><subject>Hunting</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Predictive control</subject><subject>Recursive methods</subject><subject>Refrigeration</subject><subject>Setpoint algorithm</subject><subject>Superheat</subject><subject>Valves</subject><issn>0360-1323</issn><issn>1873-684X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkEur1TAUhYMoeLz6FyTguHWneTSdebn4ggtOFJyFNN3lpvQkNUnrY-JfN4ejY0d7sVlrbfZHyEsGLQOmXi_tuPt1wnC0HTDdQtcCk4_IiemeN0qLr4_JCbiChvGOPyXPcl6gBgcuTuT37WS34g9sznHClW4JJ-8uC-piKCmuNM4UV3RVB-8o_thsyD4Getj1wEy_-_JA7bTsudhxRZqxbNGHQueYKB52i8mWKvO-YXpAW-jZB3_2v2ypLc_Jk9muGV_8nTfky7u3n-8-NPef3n-8u71vHBdQGtXbobOgsHfaCkTUVjIhxChnOzDbK857GNUAYuKjQD1IkFJLrUDOrJ96fkNeXXu3FL_tmItZ4p5CPWk6kP0gNeesutTV5VLMOeFstuTPNv00DMwFtlnMP9jmAttAZyrsGnxzDWL94fCYTHYeg6swU0Vnpuj_V_EHvB2PEQ</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Tesfay, Mehari</creator><creator>Alsaleem, Fadi</creator><creator>Arunasalam, Parthiban</creator><creator>Rao, Arvind</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-8134-4080</orcidid></search><sort><creationdate>201804</creationdate><title>Adaptive-model predictive control of electronic expansion valves with adjustable setpoint for evaporator superheat minimization</title><author>Tesfay, Mehari ; Alsaleem, Fadi ; Arunasalam, Parthiban ; Rao, Arvind</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-67a92a06e7c8a4eee8a51444b5fa91a763370b6904d3b4e895055858605f17d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive control</topic><topic>Adaptive-MPC</topic><topic>Air conditioners</topic><topic>Air conditioning</topic><topic>Algorithms</topic><topic>Energy efficiency</topic><topic>Expansion valves</topic><topic>Gas expanders</topic><topic>Heat</topic><topic>Hunting</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Predictive control</topic><topic>Recursive methods</topic><topic>Refrigeration</topic><topic>Setpoint algorithm</topic><topic>Superheat</topic><topic>Valves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tesfay, Mehari</creatorcontrib><creatorcontrib>Alsaleem, Fadi</creatorcontrib><creatorcontrib>Arunasalam, Parthiban</creatorcontrib><creatorcontrib>Rao, Arvind</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Building and environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tesfay, Mehari</au><au>Alsaleem, Fadi</au><au>Arunasalam, Parthiban</au><au>Rao, Arvind</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive-model predictive control of electronic expansion valves with adjustable setpoint for evaporator superheat minimization</atitle><jtitle>Building and environment</jtitle><date>2018-04</date><risdate>2018</risdate><volume>133</volume><spage>151</spage><epage>160</epage><pages>151-160</pages><issn>0360-1323</issn><eissn>1873-684X</eissn><abstract>In many refrigeration and air-conditioning systems, the automatic controller in electronic expansion valves have been employed as a component responsible for controlling the valve opening so that the superheat at the outlet of the evaporator remains within the desired limits. In some of these controllers, the control parameters are tuned once for a certain operating point and remain unaltered, even when the operating conditions change, unless the operator changes it manually. For a strongly nonlinear plant with a dramatically time varying characteristics, linear time invariant (LTI) prediction accuracy might degrade significantly that the performance of traditional Model Predictive Controller (MPC) becomes unacceptable. This work presents an Adaptive-Model Predictive Control (AMPC) mechanism to address this degradation where the parameters are tuned continuously through recursive estimation and update approaches, making the MPC insensitive to prediction errors and to achieve the optimal superheat response. Moreover, an adaptive setpoint hunting algorithm is implemented so that the system achieves stability and improves energy efficiency simultaneously. •An online adaptive-model mechanism is demonstrated to model HVAC system.•An MPC controller utilizes the adaptive model for controlling EEV valve.•A hunting algorithm for optimal superheat set point selection is designed.•High controller stability and fast response time were experimentally demonstrated.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.buildenv.2018.02.015</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8134-4080</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0360-1323
ispartof Building and environment, 2018-04, Vol.133, p.151-160
issn 0360-1323
1873-684X
language eng
recordid cdi_proquest_journals_2057958331
source ScienceDirect Journals (5 years ago - present)
subjects Adaptive algorithms
Adaptive control
Adaptive-MPC
Air conditioners
Air conditioning
Algorithms
Energy efficiency
Expansion valves
Gas expanders
Heat
Hunting
Mathematical models
Optimization
Parameter estimation
Predictive control
Recursive methods
Refrigeration
Setpoint algorithm
Superheat
Valves
title Adaptive-model predictive control of electronic expansion valves with adjustable setpoint for evaporator superheat minimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A55%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive-model%20predictive%20control%20of%20electronic%20expansion%20valves%20with%20adjustable%20setpoint%20for%20evaporator%20superheat%20minimization&rft.jtitle=Building%20and%20environment&rft.au=Tesfay,%20Mehari&rft.date=2018-04&rft.volume=133&rft.spage=151&rft.epage=160&rft.pages=151-160&rft.issn=0360-1323&rft.eissn=1873-684X&rft_id=info:doi/10.1016/j.buildenv.2018.02.015&rft_dat=%3Cproquest_cross%3E2057958331%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2057958331&rft_id=info:pmid/&rft_els_id=S0360132318300817&rfr_iscdi=true