Quasisymmetries of the Basilica and the Thompson Group

We give a description of the group of all quasisymmetric self-maps of the Julia set of f ( z ) =  z 2 −1 that have orientation preserving homeomorphic extensions to the whole plane. More precisely, we prove that this group is the uniform closure of the group generated by the Thompson group of the un...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometric and functional analysis 2018-06, Vol.28 (3), p.727-754, Article 727
Hauptverfasser: Lyubich, Mikhail, Merenkov, Sergei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 754
container_issue 3
container_start_page 727
container_title Geometric and functional analysis
container_volume 28
creator Lyubich, Mikhail
Merenkov, Sergei
description We give a description of the group of all quasisymmetric self-maps of the Julia set of f ( z ) =  z 2 −1 that have orientation preserving homeomorphic extensions to the whole plane. More precisely, we prove that this group is the uniform closure of the group generated by the Thompson group of the unit circle and an inversion. Moreover, this result is quantitative in the sense that distortions of the approximating maps are uniformly controlled by the distortion of the given map.
doi_str_mv 10.1007/s00039-018-0452-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2057505380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2057505380</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-19a8b5bdb8b9a19f076ace8f0d86725ab048285ab32c4c3727a2ecc9bacc1cfd3</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-AG8Fz9FJ0jTpURddhQURVvAW0jR1u2ybmqSH_fdmrSAIeprh8b55w0PoksA1ARA3AQBYiYFIDDmnGI7QjOQUsCwFHKcdSIHznL2dorMQtsnNec5nqHgZdWjDvuts9K0NmWuyuLHZXVJ3rdGZ7usvYb1x3RBcny29G4dzdNLoXbAX33OOXh_u14tHvHpePi1uV9gwUkRMSi0rXtWVrEpNygZEoY2VDdSyEJTrCnJJZZqMmtwwQYWm1piy0sYQ09Rsjq6mu4N3H6MNUW3d6PsUqShwwYEzCclFJpfxLgRvGzX4ttN-rwioQz1qqkeletShHnVgxC_GtFHH1vXR63b3L0knMqSU_t36n5_-hj4BDVh5LQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2057505380</pqid></control><display><type>article</type><title>Quasisymmetries of the Basilica and the Thompson Group</title><source>SpringerNature Complete Journals</source><creator>Lyubich, Mikhail ; Merenkov, Sergei</creator><creatorcontrib>Lyubich, Mikhail ; Merenkov, Sergei</creatorcontrib><description>We give a description of the group of all quasisymmetric self-maps of the Julia set of f ( z ) =  z 2 −1 that have orientation preserving homeomorphic extensions to the whole plane. More precisely, we prove that this group is the uniform closure of the group generated by the Thompson group of the unit circle and an inversion. Moreover, this result is quantitative in the sense that distortions of the approximating maps are uniformly controlled by the distortion of the given map.</description><identifier>ISSN: 1016-443X</identifier><identifier>EISSN: 1420-8970</identifier><identifier>DOI: 10.1007/s00039-018-0452-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Cathedrals ; Mathematics ; Mathematics and Statistics</subject><ispartof>Geometric and functional analysis, 2018-06, Vol.28 (3), p.727-754, Article 727</ispartof><rights>Springer International Publishing AG, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-19a8b5bdb8b9a19f076ace8f0d86725ab048285ab32c4c3727a2ecc9bacc1cfd3</citedby><cites>FETCH-LOGICAL-c316t-19a8b5bdb8b9a19f076ace8f0d86725ab048285ab32c4c3727a2ecc9bacc1cfd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00039-018-0452-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00039-018-0452-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Lyubich, Mikhail</creatorcontrib><creatorcontrib>Merenkov, Sergei</creatorcontrib><title>Quasisymmetries of the Basilica and the Thompson Group</title><title>Geometric and functional analysis</title><addtitle>Geom. Funct. Anal</addtitle><description>We give a description of the group of all quasisymmetric self-maps of the Julia set of f ( z ) =  z 2 −1 that have orientation preserving homeomorphic extensions to the whole plane. More precisely, we prove that this group is the uniform closure of the group generated by the Thompson group of the unit circle and an inversion. Moreover, this result is quantitative in the sense that distortions of the approximating maps are uniformly controlled by the distortion of the given map.</description><subject>Analysis</subject><subject>Cathedrals</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1016-443X</issn><issn>1420-8970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYMouK7-AG8Fz9FJ0jTpURddhQURVvAW0jR1u2ybmqSH_fdmrSAIeprh8b55w0PoksA1ARA3AQBYiYFIDDmnGI7QjOQUsCwFHKcdSIHznL2dorMQtsnNec5nqHgZdWjDvuts9K0NmWuyuLHZXVJ3rdGZ7usvYb1x3RBcny29G4dzdNLoXbAX33OOXh_u14tHvHpePi1uV9gwUkRMSi0rXtWVrEpNygZEoY2VDdSyEJTrCnJJZZqMmtwwQYWm1piy0sYQ09Rsjq6mu4N3H6MNUW3d6PsUqShwwYEzCclFJpfxLgRvGzX4ttN-rwioQz1qqkeletShHnVgxC_GtFHH1vXR63b3L0knMqSU_t36n5_-hj4BDVh5LQ</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Lyubich, Mikhail</creator><creator>Merenkov, Sergei</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180601</creationdate><title>Quasisymmetries of the Basilica and the Thompson Group</title><author>Lyubich, Mikhail ; Merenkov, Sergei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-19a8b5bdb8b9a19f076ace8f0d86725ab048285ab32c4c3727a2ecc9bacc1cfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>Cathedrals</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lyubich, Mikhail</creatorcontrib><creatorcontrib>Merenkov, Sergei</creatorcontrib><collection>CrossRef</collection><jtitle>Geometric and functional analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lyubich, Mikhail</au><au>Merenkov, Sergei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quasisymmetries of the Basilica and the Thompson Group</atitle><jtitle>Geometric and functional analysis</jtitle><stitle>Geom. Funct. Anal</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>28</volume><issue>3</issue><spage>727</spage><epage>754</epage><pages>727-754</pages><artnum>727</artnum><issn>1016-443X</issn><eissn>1420-8970</eissn><abstract>We give a description of the group of all quasisymmetric self-maps of the Julia set of f ( z ) =  z 2 −1 that have orientation preserving homeomorphic extensions to the whole plane. More precisely, we prove that this group is the uniform closure of the group generated by the Thompson group of the unit circle and an inversion. Moreover, this result is quantitative in the sense that distortions of the approximating maps are uniformly controlled by the distortion of the given map.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00039-018-0452-0</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1016-443X
ispartof Geometric and functional analysis, 2018-06, Vol.28 (3), p.727-754, Article 727
issn 1016-443X
1420-8970
language eng
recordid cdi_proquest_journals_2057505380
source SpringerNature Complete Journals
subjects Analysis
Cathedrals
Mathematics
Mathematics and Statistics
title Quasisymmetries of the Basilica and the Thompson Group
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A32%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quasisymmetries%20of%20the%20Basilica%20and%20the%20Thompson%20Group&rft.jtitle=Geometric%20and%20functional%20analysis&rft.au=Lyubich,%20Mikhail&rft.date=2018-06-01&rft.volume=28&rft.issue=3&rft.spage=727&rft.epage=754&rft.pages=727-754&rft.artnum=727&rft.issn=1016-443X&rft.eissn=1420-8970&rft_id=info:doi/10.1007/s00039-018-0452-0&rft_dat=%3Cproquest_cross%3E2057505380%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2057505380&rft_id=info:pmid/&rfr_iscdi=true