Quasisymmetries of the Basilica and the Thompson Group
We give a description of the group of all quasisymmetric self-maps of the Julia set of f ( z ) = z 2 −1 that have orientation preserving homeomorphic extensions to the whole plane. More precisely, we prove that this group is the uniform closure of the group generated by the Thompson group of the un...
Gespeichert in:
Veröffentlicht in: | Geometric and functional analysis 2018-06, Vol.28 (3), p.727-754, Article 727 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 754 |
---|---|
container_issue | 3 |
container_start_page | 727 |
container_title | Geometric and functional analysis |
container_volume | 28 |
creator | Lyubich, Mikhail Merenkov, Sergei |
description | We give a description of the group of all quasisymmetric self-maps of the Julia set of
f
(
z
) =
z
2
−1 that have orientation preserving homeomorphic extensions to the whole plane. More precisely, we prove that this group is the uniform closure of the group generated by the Thompson group of the unit circle and an inversion. Moreover, this result is quantitative in the sense that distortions of the approximating maps are uniformly controlled by the distortion of the given map. |
doi_str_mv | 10.1007/s00039-018-0452-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2057505380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2057505380</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-19a8b5bdb8b9a19f076ace8f0d86725ab048285ab32c4c3727a2ecc9bacc1cfd3</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-AG8Fz9FJ0jTpURddhQURVvAW0jR1u2ybmqSH_fdmrSAIeprh8b55w0PoksA1ARA3AQBYiYFIDDmnGI7QjOQUsCwFHKcdSIHznL2dorMQtsnNec5nqHgZdWjDvuts9K0NmWuyuLHZXVJ3rdGZ7usvYb1x3RBcny29G4dzdNLoXbAX33OOXh_u14tHvHpePi1uV9gwUkRMSi0rXtWVrEpNygZEoY2VDdSyEJTrCnJJZZqMmtwwQYWm1piy0sYQ09Rsjq6mu4N3H6MNUW3d6PsUqShwwYEzCclFJpfxLgRvGzX4ttN-rwioQz1qqkeletShHnVgxC_GtFHH1vXR63b3L0knMqSU_t36n5_-hj4BDVh5LQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2057505380</pqid></control><display><type>article</type><title>Quasisymmetries of the Basilica and the Thompson Group</title><source>SpringerNature Complete Journals</source><creator>Lyubich, Mikhail ; Merenkov, Sergei</creator><creatorcontrib>Lyubich, Mikhail ; Merenkov, Sergei</creatorcontrib><description>We give a description of the group of all quasisymmetric self-maps of the Julia set of
f
(
z
) =
z
2
−1 that have orientation preserving homeomorphic extensions to the whole plane. More precisely, we prove that this group is the uniform closure of the group generated by the Thompson group of the unit circle and an inversion. Moreover, this result is quantitative in the sense that distortions of the approximating maps are uniformly controlled by the distortion of the given map.</description><identifier>ISSN: 1016-443X</identifier><identifier>EISSN: 1420-8970</identifier><identifier>DOI: 10.1007/s00039-018-0452-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Cathedrals ; Mathematics ; Mathematics and Statistics</subject><ispartof>Geometric and functional analysis, 2018-06, Vol.28 (3), p.727-754, Article 727</ispartof><rights>Springer International Publishing AG, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-19a8b5bdb8b9a19f076ace8f0d86725ab048285ab32c4c3727a2ecc9bacc1cfd3</citedby><cites>FETCH-LOGICAL-c316t-19a8b5bdb8b9a19f076ace8f0d86725ab048285ab32c4c3727a2ecc9bacc1cfd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00039-018-0452-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00039-018-0452-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Lyubich, Mikhail</creatorcontrib><creatorcontrib>Merenkov, Sergei</creatorcontrib><title>Quasisymmetries of the Basilica and the Thompson Group</title><title>Geometric and functional analysis</title><addtitle>Geom. Funct. Anal</addtitle><description>We give a description of the group of all quasisymmetric self-maps of the Julia set of
f
(
z
) =
z
2
−1 that have orientation preserving homeomorphic extensions to the whole plane. More precisely, we prove that this group is the uniform closure of the group generated by the Thompson group of the unit circle and an inversion. Moreover, this result is quantitative in the sense that distortions of the approximating maps are uniformly controlled by the distortion of the given map.</description><subject>Analysis</subject><subject>Cathedrals</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1016-443X</issn><issn>1420-8970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYMouK7-AG8Fz9FJ0jTpURddhQURVvAW0jR1u2ybmqSH_fdmrSAIeprh8b55w0PoksA1ARA3AQBYiYFIDDmnGI7QjOQUsCwFHKcdSIHznL2dorMQtsnNec5nqHgZdWjDvuts9K0NmWuyuLHZXVJ3rdGZ7usvYb1x3RBcny29G4dzdNLoXbAX33OOXh_u14tHvHpePi1uV9gwUkRMSi0rXtWVrEpNygZEoY2VDdSyEJTrCnJJZZqMmtwwQYWm1piy0sYQ09Rsjq6mu4N3H6MNUW3d6PsUqShwwYEzCclFJpfxLgRvGzX4ttN-rwioQz1qqkeletShHnVgxC_GtFHH1vXR63b3L0knMqSU_t36n5_-hj4BDVh5LQ</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Lyubich, Mikhail</creator><creator>Merenkov, Sergei</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180601</creationdate><title>Quasisymmetries of the Basilica and the Thompson Group</title><author>Lyubich, Mikhail ; Merenkov, Sergei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-19a8b5bdb8b9a19f076ace8f0d86725ab048285ab32c4c3727a2ecc9bacc1cfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>Cathedrals</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lyubich, Mikhail</creatorcontrib><creatorcontrib>Merenkov, Sergei</creatorcontrib><collection>CrossRef</collection><jtitle>Geometric and functional analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lyubich, Mikhail</au><au>Merenkov, Sergei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quasisymmetries of the Basilica and the Thompson Group</atitle><jtitle>Geometric and functional analysis</jtitle><stitle>Geom. Funct. Anal</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>28</volume><issue>3</issue><spage>727</spage><epage>754</epage><pages>727-754</pages><artnum>727</artnum><issn>1016-443X</issn><eissn>1420-8970</eissn><abstract>We give a description of the group of all quasisymmetric self-maps of the Julia set of
f
(
z
) =
z
2
−1 that have orientation preserving homeomorphic extensions to the whole plane. More precisely, we prove that this group is the uniform closure of the group generated by the Thompson group of the unit circle and an inversion. Moreover, this result is quantitative in the sense that distortions of the approximating maps are uniformly controlled by the distortion of the given map.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00039-018-0452-0</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1016-443X |
ispartof | Geometric and functional analysis, 2018-06, Vol.28 (3), p.727-754, Article 727 |
issn | 1016-443X 1420-8970 |
language | eng |
recordid | cdi_proquest_journals_2057505380 |
source | SpringerNature Complete Journals |
subjects | Analysis Cathedrals Mathematics Mathematics and Statistics |
title | Quasisymmetries of the Basilica and the Thompson Group |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A32%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quasisymmetries%20of%20the%20Basilica%20and%20the%20Thompson%20Group&rft.jtitle=Geometric%20and%20functional%20analysis&rft.au=Lyubich,%20Mikhail&rft.date=2018-06-01&rft.volume=28&rft.issue=3&rft.spage=727&rft.epage=754&rft.pages=727-754&rft.artnum=727&rft.issn=1016-443X&rft.eissn=1420-8970&rft_id=info:doi/10.1007/s00039-018-0452-0&rft_dat=%3Cproquest_cross%3E2057505380%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2057505380&rft_id=info:pmid/&rfr_iscdi=true |