Vesiculation and Quenching During Surtseyan Eruptions at Hunga Tonga‐Hunga Ha'apai Volcano, Tonga

Surtseyan eruptions are shallow to emergent subaqueous explosive eruptions that owe much of their characteristic behavior to the interaction of magma with water. The difference in thermal properties between water and air affects the cooling and postfragmentation vesiculation processes in magma erupt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Solid earth 2018-05, Vol.123 (5), p.3762-3779
Hauptverfasser: Colombier, M., Scheu, B., Wadsworth, F. B., Cronin, S., Vasseur, J., Dobson, K. J., Hess, K.‐U., Tost, M., Yilmaz, T. I., Cimarelli, C., Brenna, M., Ruthensteiner, B., Dingwell, D. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3779
container_issue 5
container_start_page 3762
container_title Journal of geophysical research. Solid earth
container_volume 123
creator Colombier, M.
Scheu, B.
Wadsworth, F. B.
Cronin, S.
Vasseur, J.
Dobson, K. J.
Hess, K.‐U.
Tost, M.
Yilmaz, T. I.
Cimarelli, C.
Brenna, M.
Ruthensteiner, B.
Dingwell, D. B.
description Surtseyan eruptions are shallow to emergent subaqueous explosive eruptions that owe much of their characteristic behavior to the interaction of magma with water. The difference in thermal properties between water and air affects the cooling and postfragmentation vesiculation processes in magma erupted into the water column. Here we study the vesiculation and cooling processes during the 2009 and 2014–2015 Surtseyan eruptions of Hunga Tonga‐Hunga Ha'apai volcano by combining 2‐D and 3‐D vesicle‐scale analyses of lapilli and bombs and numerical thermal modeling. Most of the lapilli and bombs show gradual textural variations from rim to core. The vesicle connectivity in the lapilli and bombs increases with vesicularity from fully isolated to completely connected and also increases from rim to core in transitional clasts. We interpret the gradual textural variations and the connectivity‐vesicularity relationships as the result of postfragmentation bubble growth and coalescence interrupted at different stages by quenching in water. The measured vesicle size distributions are bimodal with a population of small and large vesicles. We interpret this bimodality as the result of two nucleation events, one prefragmentation with the nucleation and growth of large bubbles and one postfragmentation with nucleation of small vesicles. We link the thermal model with the textural variations in the clasts—showing a dependence on particle size, Leidenfrost effect, and initial melt temperature. In particular, the cooling profiles in the bombs are consistent with the gradual textural variations from rim to core in the clasts, likely caused by variations in time available for vesiculation before quenching. Key Points Lapilli and bombs from Surtseyan eruptions show gradual textural variations due to the quenching in water The kinetics of magma cooling during Surtseyan eruptions are influenced by particle size, radial position, and Leidenfrost effect The 3‐D analysis of vesicle metrics using X‐ray microtomography allows quantification of the percolation threshold in volcanic rocks
doi_str_mv 10.1029/2017JB015357
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2057476940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2057476940</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3688-29fdce5132c74320070c81179054e74b2a0b36ada30282ec1646c9072de731db3</originalsourceid><addsrcrecordid>eNp9kM9Kw0AQxhdRsFRvPsCCBy-Nzu4m2eRoa20tBVFrr2G62daUuIm7WaQ3H8Fn9ElMiYgn5zDf_PkxAx8hZwwuGfD0igOTsyGwSETygPQ4i9MgFVF8-FszcUxOndtCG0k7YmGPqKV2hfIlNkVlKJqcPnht1EthNvTG2708eds4vUNDx9bXe85RbOjUmw3SRdXmr4_PrpviBdZY0GVVKjTVoFufkKM1lk6f_mifPN-OF6NpML-f3I2u5wGKOEkCnq5zpSMmuJKh4AASVMKYTCEKtQxXHGElYsxRAE-4ViwOY5WC5LmWguUr0Sfn3d3aVm9euybbVt6a9mXGIZKhjNMQWmrQUcpWzlm9zmpbvKLdZQyyvZPZXydbXHT4e1Hq3b9sNps8DiOesER8AwKyc8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2057476940</pqid></control><display><type>article</type><title>Vesiculation and Quenching During Surtseyan Eruptions at Hunga Tonga‐Hunga Ha'apai Volcano, Tonga</title><source>Wiley Journals</source><source>Wiley Free Content</source><creator>Colombier, M. ; Scheu, B. ; Wadsworth, F. B. ; Cronin, S. ; Vasseur, J. ; Dobson, K. J. ; Hess, K.‐U. ; Tost, M. ; Yilmaz, T. I. ; Cimarelli, C. ; Brenna, M. ; Ruthensteiner, B. ; Dingwell, D. B.</creator><creatorcontrib>Colombier, M. ; Scheu, B. ; Wadsworth, F. B. ; Cronin, S. ; Vasseur, J. ; Dobson, K. J. ; Hess, K.‐U. ; Tost, M. ; Yilmaz, T. I. ; Cimarelli, C. ; Brenna, M. ; Ruthensteiner, B. ; Dingwell, D. B.</creatorcontrib><description>Surtseyan eruptions are shallow to emergent subaqueous explosive eruptions that owe much of their characteristic behavior to the interaction of magma with water. The difference in thermal properties between water and air affects the cooling and postfragmentation vesiculation processes in magma erupted into the water column. Here we study the vesiculation and cooling processes during the 2009 and 2014–2015 Surtseyan eruptions of Hunga Tonga‐Hunga Ha'apai volcano by combining 2‐D and 3‐D vesicle‐scale analyses of lapilli and bombs and numerical thermal modeling. Most of the lapilli and bombs show gradual textural variations from rim to core. The vesicle connectivity in the lapilli and bombs increases with vesicularity from fully isolated to completely connected and also increases from rim to core in transitional clasts. We interpret the gradual textural variations and the connectivity‐vesicularity relationships as the result of postfragmentation bubble growth and coalescence interrupted at different stages by quenching in water. The measured vesicle size distributions are bimodal with a population of small and large vesicles. We interpret this bimodality as the result of two nucleation events, one prefragmentation with the nucleation and growth of large bubbles and one postfragmentation with nucleation of small vesicles. We link the thermal model with the textural variations in the clasts—showing a dependence on particle size, Leidenfrost effect, and initial melt temperature. In particular, the cooling profiles in the bombs are consistent with the gradual textural variations from rim to core in the clasts, likely caused by variations in time available for vesiculation before quenching. Key Points Lapilli and bombs from Surtseyan eruptions show gradual textural variations due to the quenching in water The kinetics of magma cooling during Surtseyan eruptions are influenced by particle size, radial position, and Leidenfrost effect The 3‐D analysis of vesicle metrics using X‐ray microtomography allows quantification of the percolation threshold in volcanic rocks</description><identifier>ISSN: 2169-9313</identifier><identifier>EISSN: 2169-9356</identifier><identifier>DOI: 10.1029/2017JB015357</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Bombs ; Bubbles ; Coalescence ; Coalescing ; Cooling ; Cooling effects ; Dependence ; Eruptions ; Geophysics ; Lava ; Magma ; Mathematical models ; Melt temperature ; Modelling ; Nucleation ; Numerical modelling ; Percolation ; Profiles ; Quenching ; Surtseyan ; Temperature effects ; Thermal analysis ; Thermal models ; Thermal properties ; Thermodynamic properties ; Variation ; Vesicles ; Vesiculation ; Volcanic eruptions ; Volcanoes ; Water column</subject><ispartof>Journal of geophysical research. Solid earth, 2018-05, Vol.123 (5), p.3762-3779</ispartof><rights>2018. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3688-29fdce5132c74320070c81179054e74b2a0b36ada30282ec1646c9072de731db3</citedby><cites>FETCH-LOGICAL-a3688-29fdce5132c74320070c81179054e74b2a0b36ada30282ec1646c9072de731db3</cites><orcidid>0000-0002-0783-5065 ; 0000-0002-5707-5930 ; 0000-0003-2272-626X ; 0000-0001-7499-603X ; 0000-0001-9485-176X ; 0000-0002-5341-208X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2017JB015357$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2017JB015357$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids></links><search><creatorcontrib>Colombier, M.</creatorcontrib><creatorcontrib>Scheu, B.</creatorcontrib><creatorcontrib>Wadsworth, F. B.</creatorcontrib><creatorcontrib>Cronin, S.</creatorcontrib><creatorcontrib>Vasseur, J.</creatorcontrib><creatorcontrib>Dobson, K. J.</creatorcontrib><creatorcontrib>Hess, K.‐U.</creatorcontrib><creatorcontrib>Tost, M.</creatorcontrib><creatorcontrib>Yilmaz, T. I.</creatorcontrib><creatorcontrib>Cimarelli, C.</creatorcontrib><creatorcontrib>Brenna, M.</creatorcontrib><creatorcontrib>Ruthensteiner, B.</creatorcontrib><creatorcontrib>Dingwell, D. B.</creatorcontrib><title>Vesiculation and Quenching During Surtseyan Eruptions at Hunga Tonga‐Hunga Ha'apai Volcano, Tonga</title><title>Journal of geophysical research. Solid earth</title><description>Surtseyan eruptions are shallow to emergent subaqueous explosive eruptions that owe much of their characteristic behavior to the interaction of magma with water. The difference in thermal properties between water and air affects the cooling and postfragmentation vesiculation processes in magma erupted into the water column. Here we study the vesiculation and cooling processes during the 2009 and 2014–2015 Surtseyan eruptions of Hunga Tonga‐Hunga Ha'apai volcano by combining 2‐D and 3‐D vesicle‐scale analyses of lapilli and bombs and numerical thermal modeling. Most of the lapilli and bombs show gradual textural variations from rim to core. The vesicle connectivity in the lapilli and bombs increases with vesicularity from fully isolated to completely connected and also increases from rim to core in transitional clasts. We interpret the gradual textural variations and the connectivity‐vesicularity relationships as the result of postfragmentation bubble growth and coalescence interrupted at different stages by quenching in water. The measured vesicle size distributions are bimodal with a population of small and large vesicles. We interpret this bimodality as the result of two nucleation events, one prefragmentation with the nucleation and growth of large bubbles and one postfragmentation with nucleation of small vesicles. We link the thermal model with the textural variations in the clasts—showing a dependence on particle size, Leidenfrost effect, and initial melt temperature. In particular, the cooling profiles in the bombs are consistent with the gradual textural variations from rim to core in the clasts, likely caused by variations in time available for vesiculation before quenching. Key Points Lapilli and bombs from Surtseyan eruptions show gradual textural variations due to the quenching in water The kinetics of magma cooling during Surtseyan eruptions are influenced by particle size, radial position, and Leidenfrost effect The 3‐D analysis of vesicle metrics using X‐ray microtomography allows quantification of the percolation threshold in volcanic rocks</description><subject>Bombs</subject><subject>Bubbles</subject><subject>Coalescence</subject><subject>Coalescing</subject><subject>Cooling</subject><subject>Cooling effects</subject><subject>Dependence</subject><subject>Eruptions</subject><subject>Geophysics</subject><subject>Lava</subject><subject>Magma</subject><subject>Mathematical models</subject><subject>Melt temperature</subject><subject>Modelling</subject><subject>Nucleation</subject><subject>Numerical modelling</subject><subject>Percolation</subject><subject>Profiles</subject><subject>Quenching</subject><subject>Surtseyan</subject><subject>Temperature effects</subject><subject>Thermal analysis</subject><subject>Thermal models</subject><subject>Thermal properties</subject><subject>Thermodynamic properties</subject><subject>Variation</subject><subject>Vesicles</subject><subject>Vesiculation</subject><subject>Volcanic eruptions</subject><subject>Volcanoes</subject><subject>Water column</subject><issn>2169-9313</issn><issn>2169-9356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM9Kw0AQxhdRsFRvPsCCBy-Nzu4m2eRoa20tBVFrr2G62daUuIm7WaQ3H8Fn9ElMiYgn5zDf_PkxAx8hZwwuGfD0igOTsyGwSETygPQ4i9MgFVF8-FszcUxOndtCG0k7YmGPqKV2hfIlNkVlKJqcPnht1EthNvTG2708eds4vUNDx9bXe85RbOjUmw3SRdXmr4_PrpviBdZY0GVVKjTVoFufkKM1lk6f_mifPN-OF6NpML-f3I2u5wGKOEkCnq5zpSMmuJKh4AASVMKYTCEKtQxXHGElYsxRAE-4ViwOY5WC5LmWguUr0Sfn3d3aVm9euybbVt6a9mXGIZKhjNMQWmrQUcpWzlm9zmpbvKLdZQyyvZPZXydbXHT4e1Hq3b9sNps8DiOesER8AwKyc8g</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Colombier, M.</creator><creator>Scheu, B.</creator><creator>Wadsworth, F. B.</creator><creator>Cronin, S.</creator><creator>Vasseur, J.</creator><creator>Dobson, K. J.</creator><creator>Hess, K.‐U.</creator><creator>Tost, M.</creator><creator>Yilmaz, T. I.</creator><creator>Cimarelli, C.</creator><creator>Brenna, M.</creator><creator>Ruthensteiner, B.</creator><creator>Dingwell, D. B.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-0783-5065</orcidid><orcidid>https://orcid.org/0000-0002-5707-5930</orcidid><orcidid>https://orcid.org/0000-0003-2272-626X</orcidid><orcidid>https://orcid.org/0000-0001-7499-603X</orcidid><orcidid>https://orcid.org/0000-0001-9485-176X</orcidid><orcidid>https://orcid.org/0000-0002-5341-208X</orcidid></search><sort><creationdate>201805</creationdate><title>Vesiculation and Quenching During Surtseyan Eruptions at Hunga Tonga‐Hunga Ha'apai Volcano, Tonga</title><author>Colombier, M. ; Scheu, B. ; Wadsworth, F. B. ; Cronin, S. ; Vasseur, J. ; Dobson, K. J. ; Hess, K.‐U. ; Tost, M. ; Yilmaz, T. I. ; Cimarelli, C. ; Brenna, M. ; Ruthensteiner, B. ; Dingwell, D. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3688-29fdce5132c74320070c81179054e74b2a0b36ada30282ec1646c9072de731db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bombs</topic><topic>Bubbles</topic><topic>Coalescence</topic><topic>Coalescing</topic><topic>Cooling</topic><topic>Cooling effects</topic><topic>Dependence</topic><topic>Eruptions</topic><topic>Geophysics</topic><topic>Lava</topic><topic>Magma</topic><topic>Mathematical models</topic><topic>Melt temperature</topic><topic>Modelling</topic><topic>Nucleation</topic><topic>Numerical modelling</topic><topic>Percolation</topic><topic>Profiles</topic><topic>Quenching</topic><topic>Surtseyan</topic><topic>Temperature effects</topic><topic>Thermal analysis</topic><topic>Thermal models</topic><topic>Thermal properties</topic><topic>Thermodynamic properties</topic><topic>Variation</topic><topic>Vesicles</topic><topic>Vesiculation</topic><topic>Volcanic eruptions</topic><topic>Volcanoes</topic><topic>Water column</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colombier, M.</creatorcontrib><creatorcontrib>Scheu, B.</creatorcontrib><creatorcontrib>Wadsworth, F. B.</creatorcontrib><creatorcontrib>Cronin, S.</creatorcontrib><creatorcontrib>Vasseur, J.</creatorcontrib><creatorcontrib>Dobson, K. J.</creatorcontrib><creatorcontrib>Hess, K.‐U.</creatorcontrib><creatorcontrib>Tost, M.</creatorcontrib><creatorcontrib>Yilmaz, T. I.</creatorcontrib><creatorcontrib>Cimarelli, C.</creatorcontrib><creatorcontrib>Brenna, M.</creatorcontrib><creatorcontrib>Ruthensteiner, B.</creatorcontrib><creatorcontrib>Dingwell, D. B.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of geophysical research. Solid earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colombier, M.</au><au>Scheu, B.</au><au>Wadsworth, F. B.</au><au>Cronin, S.</au><au>Vasseur, J.</au><au>Dobson, K. J.</au><au>Hess, K.‐U.</au><au>Tost, M.</au><au>Yilmaz, T. I.</au><au>Cimarelli, C.</au><au>Brenna, M.</au><au>Ruthensteiner, B.</au><au>Dingwell, D. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vesiculation and Quenching During Surtseyan Eruptions at Hunga Tonga‐Hunga Ha'apai Volcano, Tonga</atitle><jtitle>Journal of geophysical research. Solid earth</jtitle><date>2018-05</date><risdate>2018</risdate><volume>123</volume><issue>5</issue><spage>3762</spage><epage>3779</epage><pages>3762-3779</pages><issn>2169-9313</issn><eissn>2169-9356</eissn><abstract>Surtseyan eruptions are shallow to emergent subaqueous explosive eruptions that owe much of their characteristic behavior to the interaction of magma with water. The difference in thermal properties between water and air affects the cooling and postfragmentation vesiculation processes in magma erupted into the water column. Here we study the vesiculation and cooling processes during the 2009 and 2014–2015 Surtseyan eruptions of Hunga Tonga‐Hunga Ha'apai volcano by combining 2‐D and 3‐D vesicle‐scale analyses of lapilli and bombs and numerical thermal modeling. Most of the lapilli and bombs show gradual textural variations from rim to core. The vesicle connectivity in the lapilli and bombs increases with vesicularity from fully isolated to completely connected and also increases from rim to core in transitional clasts. We interpret the gradual textural variations and the connectivity‐vesicularity relationships as the result of postfragmentation bubble growth and coalescence interrupted at different stages by quenching in water. The measured vesicle size distributions are bimodal with a population of small and large vesicles. We interpret this bimodality as the result of two nucleation events, one prefragmentation with the nucleation and growth of large bubbles and one postfragmentation with nucleation of small vesicles. We link the thermal model with the textural variations in the clasts—showing a dependence on particle size, Leidenfrost effect, and initial melt temperature. In particular, the cooling profiles in the bombs are consistent with the gradual textural variations from rim to core in the clasts, likely caused by variations in time available for vesiculation before quenching. Key Points Lapilli and bombs from Surtseyan eruptions show gradual textural variations due to the quenching in water The kinetics of magma cooling during Surtseyan eruptions are influenced by particle size, radial position, and Leidenfrost effect The 3‐D analysis of vesicle metrics using X‐ray microtomography allows quantification of the percolation threshold in volcanic rocks</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2017JB015357</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-0783-5065</orcidid><orcidid>https://orcid.org/0000-0002-5707-5930</orcidid><orcidid>https://orcid.org/0000-0003-2272-626X</orcidid><orcidid>https://orcid.org/0000-0001-7499-603X</orcidid><orcidid>https://orcid.org/0000-0001-9485-176X</orcidid><orcidid>https://orcid.org/0000-0002-5341-208X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9313
ispartof Journal of geophysical research. Solid earth, 2018-05, Vol.123 (5), p.3762-3779
issn 2169-9313
2169-9356
language eng
recordid cdi_proquest_journals_2057476940
source Wiley Journals; Wiley Free Content
subjects Bombs
Bubbles
Coalescence
Coalescing
Cooling
Cooling effects
Dependence
Eruptions
Geophysics
Lava
Magma
Mathematical models
Melt temperature
Modelling
Nucleation
Numerical modelling
Percolation
Profiles
Quenching
Surtseyan
Temperature effects
Thermal analysis
Thermal models
Thermal properties
Thermodynamic properties
Variation
Vesicles
Vesiculation
Volcanic eruptions
Volcanoes
Water column
title Vesiculation and Quenching During Surtseyan Eruptions at Hunga Tonga‐Hunga Ha'apai Volcano, Tonga
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A22%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vesiculation%20and%20Quenching%20During%20Surtseyan%20Eruptions%20at%20Hunga%20Tonga%E2%80%90Hunga%20Ha'apai%20Volcano,%20Tonga&rft.jtitle=Journal%20of%20geophysical%20research.%20Solid%20earth&rft.au=Colombier,%20M.&rft.date=2018-05&rft.volume=123&rft.issue=5&rft.spage=3762&rft.epage=3779&rft.pages=3762-3779&rft.issn=2169-9313&rft.eissn=2169-9356&rft_id=info:doi/10.1029/2017JB015357&rft_dat=%3Cproquest_cross%3E2057476940%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2057476940&rft_id=info:pmid/&rfr_iscdi=true