Vesiculation and Quenching During Surtseyan Eruptions at Hunga Tonga‐Hunga Ha'apai Volcano, Tonga
Surtseyan eruptions are shallow to emergent subaqueous explosive eruptions that owe much of their characteristic behavior to the interaction of magma with water. The difference in thermal properties between water and air affects the cooling and postfragmentation vesiculation processes in magma erupt...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Solid earth 2018-05, Vol.123 (5), p.3762-3779 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3779 |
---|---|
container_issue | 5 |
container_start_page | 3762 |
container_title | Journal of geophysical research. Solid earth |
container_volume | 123 |
creator | Colombier, M. Scheu, B. Wadsworth, F. B. Cronin, S. Vasseur, J. Dobson, K. J. Hess, K.‐U. Tost, M. Yilmaz, T. I. Cimarelli, C. Brenna, M. Ruthensteiner, B. Dingwell, D. B. |
description | Surtseyan eruptions are shallow to emergent subaqueous explosive eruptions that owe much of their characteristic behavior to the interaction of magma with water. The difference in thermal properties between water and air affects the cooling and postfragmentation vesiculation processes in magma erupted into the water column. Here we study the vesiculation and cooling processes during the 2009 and 2014–2015 Surtseyan eruptions of Hunga Tonga‐Hunga Ha'apai volcano by combining 2‐D and 3‐D vesicle‐scale analyses of lapilli and bombs and numerical thermal modeling. Most of the lapilli and bombs show gradual textural variations from rim to core. The vesicle connectivity in the lapilli and bombs increases with vesicularity from fully isolated to completely connected and also increases from rim to core in transitional clasts. We interpret the gradual textural variations and the connectivity‐vesicularity relationships as the result of postfragmentation bubble growth and coalescence interrupted at different stages by quenching in water. The measured vesicle size distributions are bimodal with a population of small and large vesicles. We interpret this bimodality as the result of two nucleation events, one prefragmentation with the nucleation and growth of large bubbles and one postfragmentation with nucleation of small vesicles. We link the thermal model with the textural variations in the clasts—showing a dependence on particle size, Leidenfrost effect, and initial melt temperature. In particular, the cooling profiles in the bombs are consistent with the gradual textural variations from rim to core in the clasts, likely caused by variations in time available for vesiculation before quenching.
Key Points
Lapilli and bombs from Surtseyan eruptions show gradual textural variations due to the quenching in water
The kinetics of magma cooling during Surtseyan eruptions are influenced by particle size, radial position, and Leidenfrost effect
The 3‐D analysis of vesicle metrics using X‐ray microtomography allows quantification of the percolation threshold in volcanic rocks |
doi_str_mv | 10.1029/2017JB015357 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2057476940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2057476940</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3688-29fdce5132c74320070c81179054e74b2a0b36ada30282ec1646c9072de731db3</originalsourceid><addsrcrecordid>eNp9kM9Kw0AQxhdRsFRvPsCCBy-Nzu4m2eRoa20tBVFrr2G62daUuIm7WaQ3H8Fn9ElMiYgn5zDf_PkxAx8hZwwuGfD0igOTsyGwSETygPQ4i9MgFVF8-FszcUxOndtCG0k7YmGPqKV2hfIlNkVlKJqcPnht1EthNvTG2708eds4vUNDx9bXe85RbOjUmw3SRdXmr4_PrpviBdZY0GVVKjTVoFufkKM1lk6f_mifPN-OF6NpML-f3I2u5wGKOEkCnq5zpSMmuJKh4AASVMKYTCEKtQxXHGElYsxRAE-4ViwOY5WC5LmWguUr0Sfn3d3aVm9euybbVt6a9mXGIZKhjNMQWmrQUcpWzlm9zmpbvKLdZQyyvZPZXydbXHT4e1Hq3b9sNps8DiOesER8AwKyc8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2057476940</pqid></control><display><type>article</type><title>Vesiculation and Quenching During Surtseyan Eruptions at Hunga Tonga‐Hunga Ha'apai Volcano, Tonga</title><source>Wiley Journals</source><source>Wiley Free Content</source><creator>Colombier, M. ; Scheu, B. ; Wadsworth, F. B. ; Cronin, S. ; Vasseur, J. ; Dobson, K. J. ; Hess, K.‐U. ; Tost, M. ; Yilmaz, T. I. ; Cimarelli, C. ; Brenna, M. ; Ruthensteiner, B. ; Dingwell, D. B.</creator><creatorcontrib>Colombier, M. ; Scheu, B. ; Wadsworth, F. B. ; Cronin, S. ; Vasseur, J. ; Dobson, K. J. ; Hess, K.‐U. ; Tost, M. ; Yilmaz, T. I. ; Cimarelli, C. ; Brenna, M. ; Ruthensteiner, B. ; Dingwell, D. B.</creatorcontrib><description>Surtseyan eruptions are shallow to emergent subaqueous explosive eruptions that owe much of their characteristic behavior to the interaction of magma with water. The difference in thermal properties between water and air affects the cooling and postfragmentation vesiculation processes in magma erupted into the water column. Here we study the vesiculation and cooling processes during the 2009 and 2014–2015 Surtseyan eruptions of Hunga Tonga‐Hunga Ha'apai volcano by combining 2‐D and 3‐D vesicle‐scale analyses of lapilli and bombs and numerical thermal modeling. Most of the lapilli and bombs show gradual textural variations from rim to core. The vesicle connectivity in the lapilli and bombs increases with vesicularity from fully isolated to completely connected and also increases from rim to core in transitional clasts. We interpret the gradual textural variations and the connectivity‐vesicularity relationships as the result of postfragmentation bubble growth and coalescence interrupted at different stages by quenching in water. The measured vesicle size distributions are bimodal with a population of small and large vesicles. We interpret this bimodality as the result of two nucleation events, one prefragmentation with the nucleation and growth of large bubbles and one postfragmentation with nucleation of small vesicles. We link the thermal model with the textural variations in the clasts—showing a dependence on particle size, Leidenfrost effect, and initial melt temperature. In particular, the cooling profiles in the bombs are consistent with the gradual textural variations from rim to core in the clasts, likely caused by variations in time available for vesiculation before quenching.
Key Points
Lapilli and bombs from Surtseyan eruptions show gradual textural variations due to the quenching in water
The kinetics of magma cooling during Surtseyan eruptions are influenced by particle size, radial position, and Leidenfrost effect
The 3‐D analysis of vesicle metrics using X‐ray microtomography allows quantification of the percolation threshold in volcanic rocks</description><identifier>ISSN: 2169-9313</identifier><identifier>EISSN: 2169-9356</identifier><identifier>DOI: 10.1029/2017JB015357</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Bombs ; Bubbles ; Coalescence ; Coalescing ; Cooling ; Cooling effects ; Dependence ; Eruptions ; Geophysics ; Lava ; Magma ; Mathematical models ; Melt temperature ; Modelling ; Nucleation ; Numerical modelling ; Percolation ; Profiles ; Quenching ; Surtseyan ; Temperature effects ; Thermal analysis ; Thermal models ; Thermal properties ; Thermodynamic properties ; Variation ; Vesicles ; Vesiculation ; Volcanic eruptions ; Volcanoes ; Water column</subject><ispartof>Journal of geophysical research. Solid earth, 2018-05, Vol.123 (5), p.3762-3779</ispartof><rights>2018. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3688-29fdce5132c74320070c81179054e74b2a0b36ada30282ec1646c9072de731db3</citedby><cites>FETCH-LOGICAL-a3688-29fdce5132c74320070c81179054e74b2a0b36ada30282ec1646c9072de731db3</cites><orcidid>0000-0002-0783-5065 ; 0000-0002-5707-5930 ; 0000-0003-2272-626X ; 0000-0001-7499-603X ; 0000-0001-9485-176X ; 0000-0002-5341-208X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2017JB015357$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2017JB015357$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids></links><search><creatorcontrib>Colombier, M.</creatorcontrib><creatorcontrib>Scheu, B.</creatorcontrib><creatorcontrib>Wadsworth, F. B.</creatorcontrib><creatorcontrib>Cronin, S.</creatorcontrib><creatorcontrib>Vasseur, J.</creatorcontrib><creatorcontrib>Dobson, K. J.</creatorcontrib><creatorcontrib>Hess, K.‐U.</creatorcontrib><creatorcontrib>Tost, M.</creatorcontrib><creatorcontrib>Yilmaz, T. I.</creatorcontrib><creatorcontrib>Cimarelli, C.</creatorcontrib><creatorcontrib>Brenna, M.</creatorcontrib><creatorcontrib>Ruthensteiner, B.</creatorcontrib><creatorcontrib>Dingwell, D. B.</creatorcontrib><title>Vesiculation and Quenching During Surtseyan Eruptions at Hunga Tonga‐Hunga Ha'apai Volcano, Tonga</title><title>Journal of geophysical research. Solid earth</title><description>Surtseyan eruptions are shallow to emergent subaqueous explosive eruptions that owe much of their characteristic behavior to the interaction of magma with water. The difference in thermal properties between water and air affects the cooling and postfragmentation vesiculation processes in magma erupted into the water column. Here we study the vesiculation and cooling processes during the 2009 and 2014–2015 Surtseyan eruptions of Hunga Tonga‐Hunga Ha'apai volcano by combining 2‐D and 3‐D vesicle‐scale analyses of lapilli and bombs and numerical thermal modeling. Most of the lapilli and bombs show gradual textural variations from rim to core. The vesicle connectivity in the lapilli and bombs increases with vesicularity from fully isolated to completely connected and also increases from rim to core in transitional clasts. We interpret the gradual textural variations and the connectivity‐vesicularity relationships as the result of postfragmentation bubble growth and coalescence interrupted at different stages by quenching in water. The measured vesicle size distributions are bimodal with a population of small and large vesicles. We interpret this bimodality as the result of two nucleation events, one prefragmentation with the nucleation and growth of large bubbles and one postfragmentation with nucleation of small vesicles. We link the thermal model with the textural variations in the clasts—showing a dependence on particle size, Leidenfrost effect, and initial melt temperature. In particular, the cooling profiles in the bombs are consistent with the gradual textural variations from rim to core in the clasts, likely caused by variations in time available for vesiculation before quenching.
Key Points
Lapilli and bombs from Surtseyan eruptions show gradual textural variations due to the quenching in water
The kinetics of magma cooling during Surtseyan eruptions are influenced by particle size, radial position, and Leidenfrost effect
The 3‐D analysis of vesicle metrics using X‐ray microtomography allows quantification of the percolation threshold in volcanic rocks</description><subject>Bombs</subject><subject>Bubbles</subject><subject>Coalescence</subject><subject>Coalescing</subject><subject>Cooling</subject><subject>Cooling effects</subject><subject>Dependence</subject><subject>Eruptions</subject><subject>Geophysics</subject><subject>Lava</subject><subject>Magma</subject><subject>Mathematical models</subject><subject>Melt temperature</subject><subject>Modelling</subject><subject>Nucleation</subject><subject>Numerical modelling</subject><subject>Percolation</subject><subject>Profiles</subject><subject>Quenching</subject><subject>Surtseyan</subject><subject>Temperature effects</subject><subject>Thermal analysis</subject><subject>Thermal models</subject><subject>Thermal properties</subject><subject>Thermodynamic properties</subject><subject>Variation</subject><subject>Vesicles</subject><subject>Vesiculation</subject><subject>Volcanic eruptions</subject><subject>Volcanoes</subject><subject>Water column</subject><issn>2169-9313</issn><issn>2169-9356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM9Kw0AQxhdRsFRvPsCCBy-Nzu4m2eRoa20tBVFrr2G62daUuIm7WaQ3H8Fn9ElMiYgn5zDf_PkxAx8hZwwuGfD0igOTsyGwSETygPQ4i9MgFVF8-FszcUxOndtCG0k7YmGPqKV2hfIlNkVlKJqcPnht1EthNvTG2708eds4vUNDx9bXe85RbOjUmw3SRdXmr4_PrpviBdZY0GVVKjTVoFufkKM1lk6f_mifPN-OF6NpML-f3I2u5wGKOEkCnq5zpSMmuJKh4AASVMKYTCEKtQxXHGElYsxRAE-4ViwOY5WC5LmWguUr0Sfn3d3aVm9euybbVt6a9mXGIZKhjNMQWmrQUcpWzlm9zmpbvKLdZQyyvZPZXydbXHT4e1Hq3b9sNps8DiOesER8AwKyc8g</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Colombier, M.</creator><creator>Scheu, B.</creator><creator>Wadsworth, F. B.</creator><creator>Cronin, S.</creator><creator>Vasseur, J.</creator><creator>Dobson, K. J.</creator><creator>Hess, K.‐U.</creator><creator>Tost, M.</creator><creator>Yilmaz, T. I.</creator><creator>Cimarelli, C.</creator><creator>Brenna, M.</creator><creator>Ruthensteiner, B.</creator><creator>Dingwell, D. B.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-0783-5065</orcidid><orcidid>https://orcid.org/0000-0002-5707-5930</orcidid><orcidid>https://orcid.org/0000-0003-2272-626X</orcidid><orcidid>https://orcid.org/0000-0001-7499-603X</orcidid><orcidid>https://orcid.org/0000-0001-9485-176X</orcidid><orcidid>https://orcid.org/0000-0002-5341-208X</orcidid></search><sort><creationdate>201805</creationdate><title>Vesiculation and Quenching During Surtseyan Eruptions at Hunga Tonga‐Hunga Ha'apai Volcano, Tonga</title><author>Colombier, M. ; Scheu, B. ; Wadsworth, F. B. ; Cronin, S. ; Vasseur, J. ; Dobson, K. J. ; Hess, K.‐U. ; Tost, M. ; Yilmaz, T. I. ; Cimarelli, C. ; Brenna, M. ; Ruthensteiner, B. ; Dingwell, D. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3688-29fdce5132c74320070c81179054e74b2a0b36ada30282ec1646c9072de731db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bombs</topic><topic>Bubbles</topic><topic>Coalescence</topic><topic>Coalescing</topic><topic>Cooling</topic><topic>Cooling effects</topic><topic>Dependence</topic><topic>Eruptions</topic><topic>Geophysics</topic><topic>Lava</topic><topic>Magma</topic><topic>Mathematical models</topic><topic>Melt temperature</topic><topic>Modelling</topic><topic>Nucleation</topic><topic>Numerical modelling</topic><topic>Percolation</topic><topic>Profiles</topic><topic>Quenching</topic><topic>Surtseyan</topic><topic>Temperature effects</topic><topic>Thermal analysis</topic><topic>Thermal models</topic><topic>Thermal properties</topic><topic>Thermodynamic properties</topic><topic>Variation</topic><topic>Vesicles</topic><topic>Vesiculation</topic><topic>Volcanic eruptions</topic><topic>Volcanoes</topic><topic>Water column</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colombier, M.</creatorcontrib><creatorcontrib>Scheu, B.</creatorcontrib><creatorcontrib>Wadsworth, F. B.</creatorcontrib><creatorcontrib>Cronin, S.</creatorcontrib><creatorcontrib>Vasseur, J.</creatorcontrib><creatorcontrib>Dobson, K. J.</creatorcontrib><creatorcontrib>Hess, K.‐U.</creatorcontrib><creatorcontrib>Tost, M.</creatorcontrib><creatorcontrib>Yilmaz, T. I.</creatorcontrib><creatorcontrib>Cimarelli, C.</creatorcontrib><creatorcontrib>Brenna, M.</creatorcontrib><creatorcontrib>Ruthensteiner, B.</creatorcontrib><creatorcontrib>Dingwell, D. B.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of geophysical research. Solid earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colombier, M.</au><au>Scheu, B.</au><au>Wadsworth, F. B.</au><au>Cronin, S.</au><au>Vasseur, J.</au><au>Dobson, K. J.</au><au>Hess, K.‐U.</au><au>Tost, M.</au><au>Yilmaz, T. I.</au><au>Cimarelli, C.</au><au>Brenna, M.</au><au>Ruthensteiner, B.</au><au>Dingwell, D. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vesiculation and Quenching During Surtseyan Eruptions at Hunga Tonga‐Hunga Ha'apai Volcano, Tonga</atitle><jtitle>Journal of geophysical research. Solid earth</jtitle><date>2018-05</date><risdate>2018</risdate><volume>123</volume><issue>5</issue><spage>3762</spage><epage>3779</epage><pages>3762-3779</pages><issn>2169-9313</issn><eissn>2169-9356</eissn><abstract>Surtseyan eruptions are shallow to emergent subaqueous explosive eruptions that owe much of their characteristic behavior to the interaction of magma with water. The difference in thermal properties between water and air affects the cooling and postfragmentation vesiculation processes in magma erupted into the water column. Here we study the vesiculation and cooling processes during the 2009 and 2014–2015 Surtseyan eruptions of Hunga Tonga‐Hunga Ha'apai volcano by combining 2‐D and 3‐D vesicle‐scale analyses of lapilli and bombs and numerical thermal modeling. Most of the lapilli and bombs show gradual textural variations from rim to core. The vesicle connectivity in the lapilli and bombs increases with vesicularity from fully isolated to completely connected and also increases from rim to core in transitional clasts. We interpret the gradual textural variations and the connectivity‐vesicularity relationships as the result of postfragmentation bubble growth and coalescence interrupted at different stages by quenching in water. The measured vesicle size distributions are bimodal with a population of small and large vesicles. We interpret this bimodality as the result of two nucleation events, one prefragmentation with the nucleation and growth of large bubbles and one postfragmentation with nucleation of small vesicles. We link the thermal model with the textural variations in the clasts—showing a dependence on particle size, Leidenfrost effect, and initial melt temperature. In particular, the cooling profiles in the bombs are consistent with the gradual textural variations from rim to core in the clasts, likely caused by variations in time available for vesiculation before quenching.
Key Points
Lapilli and bombs from Surtseyan eruptions show gradual textural variations due to the quenching in water
The kinetics of magma cooling during Surtseyan eruptions are influenced by particle size, radial position, and Leidenfrost effect
The 3‐D analysis of vesicle metrics using X‐ray microtomography allows quantification of the percolation threshold in volcanic rocks</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2017JB015357</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-0783-5065</orcidid><orcidid>https://orcid.org/0000-0002-5707-5930</orcidid><orcidid>https://orcid.org/0000-0003-2272-626X</orcidid><orcidid>https://orcid.org/0000-0001-7499-603X</orcidid><orcidid>https://orcid.org/0000-0001-9485-176X</orcidid><orcidid>https://orcid.org/0000-0002-5341-208X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9313 |
ispartof | Journal of geophysical research. Solid earth, 2018-05, Vol.123 (5), p.3762-3779 |
issn | 2169-9313 2169-9356 |
language | eng |
recordid | cdi_proquest_journals_2057476940 |
source | Wiley Journals; Wiley Free Content |
subjects | Bombs Bubbles Coalescence Coalescing Cooling Cooling effects Dependence Eruptions Geophysics Lava Magma Mathematical models Melt temperature Modelling Nucleation Numerical modelling Percolation Profiles Quenching Surtseyan Temperature effects Thermal analysis Thermal models Thermal properties Thermodynamic properties Variation Vesicles Vesiculation Volcanic eruptions Volcanoes Water column |
title | Vesiculation and Quenching During Surtseyan Eruptions at Hunga Tonga‐Hunga Ha'apai Volcano, Tonga |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A22%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vesiculation%20and%20Quenching%20During%20Surtseyan%20Eruptions%20at%20Hunga%20Tonga%E2%80%90Hunga%20Ha'apai%20Volcano,%20Tonga&rft.jtitle=Journal%20of%20geophysical%20research.%20Solid%20earth&rft.au=Colombier,%20M.&rft.date=2018-05&rft.volume=123&rft.issue=5&rft.spage=3762&rft.epage=3779&rft.pages=3762-3779&rft.issn=2169-9313&rft.eissn=2169-9356&rft_id=info:doi/10.1029/2017JB015357&rft_dat=%3Cproquest_cross%3E2057476940%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2057476940&rft_id=info:pmid/&rfr_iscdi=true |