The Gravitational Stability of Lenses in Magma Mushes: Confined Rayleigh‐Taylor Instabilities

In the current paradigm, magma primarily exists in the crust as a crystalline mush containing distributed melt lenses. If a melt‐rich (or fluid) lens is less dense than the overlying mush, then Rayleigh‐Taylor (RT) instabilities will develop and could evolve into spheroids of ascending melt. Due to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Solid earth 2018-05, Vol.123 (5), p.3593-3607
Hauptverfasser: Seropian, G., Rust, A. C., Sparks, R. S. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3607
container_issue 5
container_start_page 3593
container_title Journal of geophysical research. Solid earth
container_volume 123
creator Seropian, G.
Rust, A. C.
Sparks, R. S. J.
description In the current paradigm, magma primarily exists in the crust as a crystalline mush containing distributed melt lenses. If a melt‐rich (or fluid) lens is less dense than the overlying mush, then Rayleigh‐Taylor (RT) instabilities will develop and could evolve into spheroids of ascending melt. Due to contrasting melt‐mush rheologies, the theoretical RT instability wavelength can be orders of magnitude larger than the magmatic system. We explored how this confinement affects the gravitational stability of melt lenses through laboratory experiments with pairs of liquids with one layer much thinner and up to 2.2·105 times less viscous than the other; we extended the viscosity ratio to 106 with linear stability analysis. We found the growth rate of a bounded RT instability is approximately ΔρgD6πμ2, where Δρ is the difference in density between the fluids, g is gravity, D is the container diameter, and μ2 is the viscosity of the thicker viscous layer. This differs from the unbounded case, where the growth rate also depends on the thickness and viscosity of the thin, low‐viscosity layer. Applying the results to melt lenses in magmatic mushes, we find that for the ranges of expected rheologies, the timescales for development of the instability, and the volumes of packets of rising melt generated span very wide ranges. They are comparable with the frequencies and sizes of volcanic eruptions and episodes of unrest and so suggest that RT instabilities in mush systems can cause episodic volcanism. Key Points Melt‐mush Rayleigh‐Taylor instabilities are generally laterally confined, which reduces the growth rate The confined instability growth rate only depends on the mush viscosity, melt lens diameter, and density difference Mush rheology is a key control on size and frequency of eruptions related to buoyancy instabilities
doi_str_mv 10.1029/2018JB015523
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2057474378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2057474378</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3684-3a744f8eda9310887225768de229f3b67470d9b56c80deee427cd255edbb66783</originalsourceid><addsrcrecordid>eNp9kM9OwkAQxhujiQS5-QCbeLW6_3frTYgiBGKCeN5s6RSWlBZ3i6Y3H8Fn9EmsQown5zJfJr_5MvNF0TnBVwTT5Jpiosd9TISg7CjqUCKTOGFCHv9qwk6jXghr3JZuR4R3IjNfARp6--pqW7uqtAV6qm3qClc3qMrRBMoAAbkSTe1yY9F0F1YQbtCgKnNXQoZmtinALVef7x_zVlYejcpwcHAQzqKT3BYBeofejZ7v7-aDh3jyOBwNbiexZVLzmFnFea4hs-2ZWGtFqVBSZ0BpkrNUKq5wlqRCLjTOAIBTtcioEJClqZRKs250sffd-uplB6E262rn23eCoVi065z9UJd7auGrEDzkZuvdxvrGEGy-UzR_U2xxtsffXAHNv6wZD2d9QZXm7At4-HNW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2057474378</pqid></control><display><type>article</type><title>The Gravitational Stability of Lenses in Magma Mushes: Confined Rayleigh‐Taylor Instabilities</title><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><creator>Seropian, G. ; Rust, A. C. ; Sparks, R. S. J.</creator><creatorcontrib>Seropian, G. ; Rust, A. C. ; Sparks, R. S. J.</creatorcontrib><description>In the current paradigm, magma primarily exists in the crust as a crystalline mush containing distributed melt lenses. If a melt‐rich (or fluid) lens is less dense than the overlying mush, then Rayleigh‐Taylor (RT) instabilities will develop and could evolve into spheroids of ascending melt. Due to contrasting melt‐mush rheologies, the theoretical RT instability wavelength can be orders of magnitude larger than the magmatic system. We explored how this confinement affects the gravitational stability of melt lenses through laboratory experiments with pairs of liquids with one layer much thinner and up to 2.2·105 times less viscous than the other; we extended the viscosity ratio to 106 with linear stability analysis. We found the growth rate of a bounded RT instability is approximately ΔρgD6πμ2, where Δρ is the difference in density between the fluids, g is gravity, D is the container diameter, and μ2 is the viscosity of the thicker viscous layer. This differs from the unbounded case, where the growth rate also depends on the thickness and viscosity of the thin, low‐viscosity layer. Applying the results to melt lenses in magmatic mushes, we find that for the ranges of expected rheologies, the timescales for development of the instability, and the volumes of packets of rising melt generated span very wide ranges. They are comparable with the frequencies and sizes of volcanic eruptions and episodes of unrest and so suggest that RT instabilities in mush systems can cause episodic volcanism. Key Points Melt‐mush Rayleigh‐Taylor instabilities are generally laterally confined, which reduces the growth rate The confined instability growth rate only depends on the mush viscosity, melt lens diameter, and density difference Mush rheology is a key control on size and frequency of eruptions related to buoyancy instabilities</description><identifier>ISSN: 2169-9313</identifier><identifier>EISSN: 2169-9356</identifier><identifier>DOI: 10.1029/2018JB015523</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>crystal mush ; Fluids ; Geophysics ; Gravitation ; Gravity ; Growth rate ; Instability ; Laboratory experiments ; Lava ; Lenses ; Liquids ; Magma ; magma transport ; magmatic system ; melt layer ; Rayleigh‐Taylor ; Rheological properties ; Spheroids ; Stability ; Stability analysis ; Viscosity ; Viscosity ratio ; Volcanic activity ; Volcanic eruptions ; Volcanism ; Wavelength</subject><ispartof>Journal of geophysical research. Solid earth, 2018-05, Vol.123 (5), p.3593-3607</ispartof><rights>2018. The Authors.</rights><rights>2018. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3684-3a744f8eda9310887225768de229f3b67470d9b56c80deee427cd255edbb66783</citedby><cites>FETCH-LOGICAL-a3684-3a744f8eda9310887225768de229f3b67470d9b56c80deee427cd255edbb66783</cites><orcidid>0000-0002-1885-4763</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018JB015523$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018JB015523$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1416,1432,27923,27924,45573,45574,46408,46832</link.rule.ids></links><search><creatorcontrib>Seropian, G.</creatorcontrib><creatorcontrib>Rust, A. C.</creatorcontrib><creatorcontrib>Sparks, R. S. J.</creatorcontrib><title>The Gravitational Stability of Lenses in Magma Mushes: Confined Rayleigh‐Taylor Instabilities</title><title>Journal of geophysical research. Solid earth</title><description>In the current paradigm, magma primarily exists in the crust as a crystalline mush containing distributed melt lenses. If a melt‐rich (or fluid) lens is less dense than the overlying mush, then Rayleigh‐Taylor (RT) instabilities will develop and could evolve into spheroids of ascending melt. Due to contrasting melt‐mush rheologies, the theoretical RT instability wavelength can be orders of magnitude larger than the magmatic system. We explored how this confinement affects the gravitational stability of melt lenses through laboratory experiments with pairs of liquids with one layer much thinner and up to 2.2·105 times less viscous than the other; we extended the viscosity ratio to 106 with linear stability analysis. We found the growth rate of a bounded RT instability is approximately ΔρgD6πμ2, where Δρ is the difference in density between the fluids, g is gravity, D is the container diameter, and μ2 is the viscosity of the thicker viscous layer. This differs from the unbounded case, where the growth rate also depends on the thickness and viscosity of the thin, low‐viscosity layer. Applying the results to melt lenses in magmatic mushes, we find that for the ranges of expected rheologies, the timescales for development of the instability, and the volumes of packets of rising melt generated span very wide ranges. They are comparable with the frequencies and sizes of volcanic eruptions and episodes of unrest and so suggest that RT instabilities in mush systems can cause episodic volcanism. Key Points Melt‐mush Rayleigh‐Taylor instabilities are generally laterally confined, which reduces the growth rate The confined instability growth rate only depends on the mush viscosity, melt lens diameter, and density difference Mush rheology is a key control on size and frequency of eruptions related to buoyancy instabilities</description><subject>crystal mush</subject><subject>Fluids</subject><subject>Geophysics</subject><subject>Gravitation</subject><subject>Gravity</subject><subject>Growth rate</subject><subject>Instability</subject><subject>Laboratory experiments</subject><subject>Lava</subject><subject>Lenses</subject><subject>Liquids</subject><subject>Magma</subject><subject>magma transport</subject><subject>magmatic system</subject><subject>melt layer</subject><subject>Rayleigh‐Taylor</subject><subject>Rheological properties</subject><subject>Spheroids</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>Viscosity</subject><subject>Viscosity ratio</subject><subject>Volcanic activity</subject><subject>Volcanic eruptions</subject><subject>Volcanism</subject><subject>Wavelength</subject><issn>2169-9313</issn><issn>2169-9356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kM9OwkAQxhujiQS5-QCbeLW6_3frTYgiBGKCeN5s6RSWlBZ3i6Y3H8Fn9EmsQown5zJfJr_5MvNF0TnBVwTT5Jpiosd9TISg7CjqUCKTOGFCHv9qwk6jXghr3JZuR4R3IjNfARp6--pqW7uqtAV6qm3qClc3qMrRBMoAAbkSTe1yY9F0F1YQbtCgKnNXQoZmtinALVef7x_zVlYejcpwcHAQzqKT3BYBeofejZ7v7-aDh3jyOBwNbiexZVLzmFnFea4hs-2ZWGtFqVBSZ0BpkrNUKq5wlqRCLjTOAIBTtcioEJClqZRKs250sffd-uplB6E262rn23eCoVi065z9UJd7auGrEDzkZuvdxvrGEGy-UzR_U2xxtsffXAHNv6wZD2d9QZXm7At4-HNW</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Seropian, G.</creator><creator>Rust, A. C.</creator><creator>Sparks, R. S. J.</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-1885-4763</orcidid></search><sort><creationdate>201805</creationdate><title>The Gravitational Stability of Lenses in Magma Mushes: Confined Rayleigh‐Taylor Instabilities</title><author>Seropian, G. ; Rust, A. C. ; Sparks, R. S. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3684-3a744f8eda9310887225768de229f3b67470d9b56c80deee427cd255edbb66783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>crystal mush</topic><topic>Fluids</topic><topic>Geophysics</topic><topic>Gravitation</topic><topic>Gravity</topic><topic>Growth rate</topic><topic>Instability</topic><topic>Laboratory experiments</topic><topic>Lava</topic><topic>Lenses</topic><topic>Liquids</topic><topic>Magma</topic><topic>magma transport</topic><topic>magmatic system</topic><topic>melt layer</topic><topic>Rayleigh‐Taylor</topic><topic>Rheological properties</topic><topic>Spheroids</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>Viscosity</topic><topic>Viscosity ratio</topic><topic>Volcanic activity</topic><topic>Volcanic eruptions</topic><topic>Volcanism</topic><topic>Wavelength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seropian, G.</creatorcontrib><creatorcontrib>Rust, A. C.</creatorcontrib><creatorcontrib>Sparks, R. S. J.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of geophysical research. Solid earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seropian, G.</au><au>Rust, A. C.</au><au>Sparks, R. S. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Gravitational Stability of Lenses in Magma Mushes: Confined Rayleigh‐Taylor Instabilities</atitle><jtitle>Journal of geophysical research. Solid earth</jtitle><date>2018-05</date><risdate>2018</risdate><volume>123</volume><issue>5</issue><spage>3593</spage><epage>3607</epage><pages>3593-3607</pages><issn>2169-9313</issn><eissn>2169-9356</eissn><abstract>In the current paradigm, magma primarily exists in the crust as a crystalline mush containing distributed melt lenses. If a melt‐rich (or fluid) lens is less dense than the overlying mush, then Rayleigh‐Taylor (RT) instabilities will develop and could evolve into spheroids of ascending melt. Due to contrasting melt‐mush rheologies, the theoretical RT instability wavelength can be orders of magnitude larger than the magmatic system. We explored how this confinement affects the gravitational stability of melt lenses through laboratory experiments with pairs of liquids with one layer much thinner and up to 2.2·105 times less viscous than the other; we extended the viscosity ratio to 106 with linear stability analysis. We found the growth rate of a bounded RT instability is approximately ΔρgD6πμ2, where Δρ is the difference in density between the fluids, g is gravity, D is the container diameter, and μ2 is the viscosity of the thicker viscous layer. This differs from the unbounded case, where the growth rate also depends on the thickness and viscosity of the thin, low‐viscosity layer. Applying the results to melt lenses in magmatic mushes, we find that for the ranges of expected rheologies, the timescales for development of the instability, and the volumes of packets of rising melt generated span very wide ranges. They are comparable with the frequencies and sizes of volcanic eruptions and episodes of unrest and so suggest that RT instabilities in mush systems can cause episodic volcanism. Key Points Melt‐mush Rayleigh‐Taylor instabilities are generally laterally confined, which reduces the growth rate The confined instability growth rate only depends on the mush viscosity, melt lens diameter, and density difference Mush rheology is a key control on size and frequency of eruptions related to buoyancy instabilities</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2018JB015523</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1885-4763</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9313
ispartof Journal of geophysical research. Solid earth, 2018-05, Vol.123 (5), p.3593-3607
issn 2169-9313
2169-9356
language eng
recordid cdi_proquest_journals_2057474378
source Wiley Free Content; Wiley Online Library All Journals
subjects crystal mush
Fluids
Geophysics
Gravitation
Gravity
Growth rate
Instability
Laboratory experiments
Lava
Lenses
Liquids
Magma
magma transport
magmatic system
melt layer
Rayleigh‐Taylor
Rheological properties
Spheroids
Stability
Stability analysis
Viscosity
Viscosity ratio
Volcanic activity
Volcanic eruptions
Volcanism
Wavelength
title The Gravitational Stability of Lenses in Magma Mushes: Confined Rayleigh‐Taylor Instabilities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T04%3A42%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Gravitational%20Stability%20of%20Lenses%20in%20Magma%20Mushes:%20Confined%20Rayleigh%E2%80%90Taylor%20Instabilities&rft.jtitle=Journal%20of%20geophysical%20research.%20Solid%20earth&rft.au=Seropian,%20G.&rft.date=2018-05&rft.volume=123&rft.issue=5&rft.spage=3593&rft.epage=3607&rft.pages=3593-3607&rft.issn=2169-9313&rft.eissn=2169-9356&rft_id=info:doi/10.1029/2018JB015523&rft_dat=%3Cproquest_cross%3E2057474378%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2057474378&rft_id=info:pmid/&rfr_iscdi=true