Phenol Catalytic Hydrogenation over Palladium Nanoparticles Supported on Metal‐Organic Frameworks in the Aqueous Phase
Metal‐organic frameworks (MOFs) have been extensively applied as supports in hydrogenation catalysis owing to their topological structure and high hydrogen storage capabilities. Pd nanoparticles (NPs) supported on a hollow box‐shaped MOF were prepared for phenol hydrogenation in the aqueous phase. T...
Gespeichert in:
Veröffentlicht in: | ChemCatChem 2018-06, Vol.10 (12), p.2558-2570 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2570 |
---|---|
container_issue | 12 |
container_start_page | 2558 |
container_title | ChemCatChem |
container_volume | 10 |
creator | Chen, Hao He, Yulian Pfefferle, Lisa D. Pu, Weihua Wu, Yulong Qi, Suitao |
description | Metal‐organic frameworks (MOFs) have been extensively applied as supports in hydrogenation catalysis owing to their topological structure and high hydrogen storage capabilities. Pd nanoparticles (NPs) supported on a hollow box‐shaped MOF were prepared for phenol hydrogenation in the aqueous phase. The MOF preparation modulated by monocarboxylic acids grow into different structures. MOF140‐AA, modulated by acetic acid at 140 °C, presents the structure of regular cube with a smooth surface. Compared to other supports, Pd NPs supported on MOF140‐AA presents high phenol conversion due to the high hydrogen storage capability of MOF140‐AA. Phenol is completely converted to cyclohexanol over Pd/MOF140‐AA reacted at 260 °C for 2 h with high selectivity. The reaction mechanism of phenol hydrogenation is studied by density functional theory (DFT). The phenol hydrogenation mechanism is calculated on a Pd38 cluster, which describes the reaction pathway consistent with experimental results.
Hex, hex, hex! Phenol hydrogenation mechanism was divided into two pathways. The main pathway is phenol firstly hydrogenate to cyclohexanone and then continuously hydrogenate to cyclohexanol. The side pathway is phenol directly hydrogenate to cyclohexanol. Finally, a part of cyclohexanol converts to cyclohexane. |
doi_str_mv | 10.1002/cctc.201800211 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2057448190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2057448190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3831-3ed5bcd758969eb6d0694330b6eca6d86575d87f8e7997e433f504d84870d56c3</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhiMEEqWwMltiTrHrJLbHKqIUqdBKlDly7UubksbBTijZeASekSfBVVEZme5O9_3_nf4guCZ4QDAe3irVqMEQE-4HQk6CHuEJCykX4vTYc3weXDi3wTgRlMW94GO-hsqUKJWNLLumUGjSaWtWUMmmMBUy72DRXJal1EW7RU-yMrW0nivBoee2ro1tQCNPPoJ3-P78mtmVrLzP2Mot7Ix9daioULMGNHprwbQOzdfSwWVwlsvSwdVv7Qcv47tFOgmns_uHdDQNFeWUhBR0vFSaxVwkApaJ9o9HlOJlAkommicxizVnOQcmBAO_ymMcaR5xhnWcKNoPbg6-tTX-vmuyjWlt5U9mQxyzKOJEYE8NDpSyxjkLeVbbYittlxGc7dPN9ulmx3S9QBwEu6KE7h86S9NF-qf9AVqXgKM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2057448190</pqid></control><display><type>article</type><title>Phenol Catalytic Hydrogenation over Palladium Nanoparticles Supported on Metal‐Organic Frameworks in the Aqueous Phase</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Hao ; He, Yulian ; Pfefferle, Lisa D. ; Pu, Weihua ; Wu, Yulong ; Qi, Suitao</creator><creatorcontrib>Chen, Hao ; He, Yulian ; Pfefferle, Lisa D. ; Pu, Weihua ; Wu, Yulong ; Qi, Suitao</creatorcontrib><description>Metal‐organic frameworks (MOFs) have been extensively applied as supports in hydrogenation catalysis owing to their topological structure and high hydrogen storage capabilities. Pd nanoparticles (NPs) supported on a hollow box‐shaped MOF were prepared for phenol hydrogenation in the aqueous phase. The MOF preparation modulated by monocarboxylic acids grow into different structures. MOF140‐AA, modulated by acetic acid at 140 °C, presents the structure of regular cube with a smooth surface. Compared to other supports, Pd NPs supported on MOF140‐AA presents high phenol conversion due to the high hydrogen storage capability of MOF140‐AA. Phenol is completely converted to cyclohexanol over Pd/MOF140‐AA reacted at 260 °C for 2 h with high selectivity. The reaction mechanism of phenol hydrogenation is studied by density functional theory (DFT). The phenol hydrogenation mechanism is calculated on a Pd38 cluster, which describes the reaction pathway consistent with experimental results.
Hex, hex, hex! Phenol hydrogenation mechanism was divided into two pathways. The main pathway is phenol firstly hydrogenate to cyclohexanone and then continuously hydrogenate to cyclohexanol. The side pathway is phenol directly hydrogenate to cyclohexanol. Finally, a part of cyclohexanol converts to cyclohexane.</description><identifier>ISSN: 1867-3880</identifier><identifier>EISSN: 1867-3899</identifier><identifier>DOI: 10.1002/cctc.201800211</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Acetic acid ; Catalysis ; Density functional theory ; Hydrogen storage ; Hydrogenation ; Metal-organic frameworks ; Nanoparticles ; Palladium ; palladium nanoparticles ; phenol hydrogenation ; Phenols ; Reaction mechanisms</subject><ispartof>ChemCatChem, 2018-06, Vol.10 (12), p.2558-2570</ispartof><rights>2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3831-3ed5bcd758969eb6d0694330b6eca6d86575d87f8e7997e433f504d84870d56c3</citedby><cites>FETCH-LOGICAL-c3831-3ed5bcd758969eb6d0694330b6eca6d86575d87f8e7997e433f504d84870d56c3</cites><orcidid>0000-0001-9972-4137</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcctc.201800211$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcctc.201800211$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>He, Yulian</creatorcontrib><creatorcontrib>Pfefferle, Lisa D.</creatorcontrib><creatorcontrib>Pu, Weihua</creatorcontrib><creatorcontrib>Wu, Yulong</creatorcontrib><creatorcontrib>Qi, Suitao</creatorcontrib><title>Phenol Catalytic Hydrogenation over Palladium Nanoparticles Supported on Metal‐Organic Frameworks in the Aqueous Phase</title><title>ChemCatChem</title><description>Metal‐organic frameworks (MOFs) have been extensively applied as supports in hydrogenation catalysis owing to their topological structure and high hydrogen storage capabilities. Pd nanoparticles (NPs) supported on a hollow box‐shaped MOF were prepared for phenol hydrogenation in the aqueous phase. The MOF preparation modulated by monocarboxylic acids grow into different structures. MOF140‐AA, modulated by acetic acid at 140 °C, presents the structure of regular cube with a smooth surface. Compared to other supports, Pd NPs supported on MOF140‐AA presents high phenol conversion due to the high hydrogen storage capability of MOF140‐AA. Phenol is completely converted to cyclohexanol over Pd/MOF140‐AA reacted at 260 °C for 2 h with high selectivity. The reaction mechanism of phenol hydrogenation is studied by density functional theory (DFT). The phenol hydrogenation mechanism is calculated on a Pd38 cluster, which describes the reaction pathway consistent with experimental results.
Hex, hex, hex! Phenol hydrogenation mechanism was divided into two pathways. The main pathway is phenol firstly hydrogenate to cyclohexanone and then continuously hydrogenate to cyclohexanol. The side pathway is phenol directly hydrogenate to cyclohexanol. Finally, a part of cyclohexanol converts to cyclohexane.</description><subject>Acetic acid</subject><subject>Catalysis</subject><subject>Density functional theory</subject><subject>Hydrogen storage</subject><subject>Hydrogenation</subject><subject>Metal-organic frameworks</subject><subject>Nanoparticles</subject><subject>Palladium</subject><subject>palladium nanoparticles</subject><subject>phenol hydrogenation</subject><subject>Phenols</subject><subject>Reaction mechanisms</subject><issn>1867-3880</issn><issn>1867-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQhiMEEqWwMltiTrHrJLbHKqIUqdBKlDly7UubksbBTijZeASekSfBVVEZme5O9_3_nf4guCZ4QDAe3irVqMEQE-4HQk6CHuEJCykX4vTYc3weXDi3wTgRlMW94GO-hsqUKJWNLLumUGjSaWtWUMmmMBUy72DRXJal1EW7RU-yMrW0nivBoee2ro1tQCNPPoJ3-P78mtmVrLzP2Mot7Ix9daioULMGNHprwbQOzdfSwWVwlsvSwdVv7Qcv47tFOgmns_uHdDQNFeWUhBR0vFSaxVwkApaJ9o9HlOJlAkommicxizVnOQcmBAO_ymMcaR5xhnWcKNoPbg6-tTX-vmuyjWlt5U9mQxyzKOJEYE8NDpSyxjkLeVbbYittlxGc7dPN9ulmx3S9QBwEu6KE7h86S9NF-qf9AVqXgKM</recordid><startdate>20180621</startdate><enddate>20180621</enddate><creator>Chen, Hao</creator><creator>He, Yulian</creator><creator>Pfefferle, Lisa D.</creator><creator>Pu, Weihua</creator><creator>Wu, Yulong</creator><creator>Qi, Suitao</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9972-4137</orcidid></search><sort><creationdate>20180621</creationdate><title>Phenol Catalytic Hydrogenation over Palladium Nanoparticles Supported on Metal‐Organic Frameworks in the Aqueous Phase</title><author>Chen, Hao ; He, Yulian ; Pfefferle, Lisa D. ; Pu, Weihua ; Wu, Yulong ; Qi, Suitao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3831-3ed5bcd758969eb6d0694330b6eca6d86575d87f8e7997e433f504d84870d56c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acetic acid</topic><topic>Catalysis</topic><topic>Density functional theory</topic><topic>Hydrogen storage</topic><topic>Hydrogenation</topic><topic>Metal-organic frameworks</topic><topic>Nanoparticles</topic><topic>Palladium</topic><topic>palladium nanoparticles</topic><topic>phenol hydrogenation</topic><topic>Phenols</topic><topic>Reaction mechanisms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>He, Yulian</creatorcontrib><creatorcontrib>Pfefferle, Lisa D.</creatorcontrib><creatorcontrib>Pu, Weihua</creatorcontrib><creatorcontrib>Wu, Yulong</creatorcontrib><creatorcontrib>Qi, Suitao</creatorcontrib><collection>CrossRef</collection><jtitle>ChemCatChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Hao</au><au>He, Yulian</au><au>Pfefferle, Lisa D.</au><au>Pu, Weihua</au><au>Wu, Yulong</au><au>Qi, Suitao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phenol Catalytic Hydrogenation over Palladium Nanoparticles Supported on Metal‐Organic Frameworks in the Aqueous Phase</atitle><jtitle>ChemCatChem</jtitle><date>2018-06-21</date><risdate>2018</risdate><volume>10</volume><issue>12</issue><spage>2558</spage><epage>2570</epage><pages>2558-2570</pages><issn>1867-3880</issn><eissn>1867-3899</eissn><abstract>Metal‐organic frameworks (MOFs) have been extensively applied as supports in hydrogenation catalysis owing to their topological structure and high hydrogen storage capabilities. Pd nanoparticles (NPs) supported on a hollow box‐shaped MOF were prepared for phenol hydrogenation in the aqueous phase. The MOF preparation modulated by monocarboxylic acids grow into different structures. MOF140‐AA, modulated by acetic acid at 140 °C, presents the structure of regular cube with a smooth surface. Compared to other supports, Pd NPs supported on MOF140‐AA presents high phenol conversion due to the high hydrogen storage capability of MOF140‐AA. Phenol is completely converted to cyclohexanol over Pd/MOF140‐AA reacted at 260 °C for 2 h with high selectivity. The reaction mechanism of phenol hydrogenation is studied by density functional theory (DFT). The phenol hydrogenation mechanism is calculated on a Pd38 cluster, which describes the reaction pathway consistent with experimental results.
Hex, hex, hex! Phenol hydrogenation mechanism was divided into two pathways. The main pathway is phenol firstly hydrogenate to cyclohexanone and then continuously hydrogenate to cyclohexanol. The side pathway is phenol directly hydrogenate to cyclohexanol. Finally, a part of cyclohexanol converts to cyclohexane.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cctc.201800211</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9972-4137</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1867-3880 |
ispartof | ChemCatChem, 2018-06, Vol.10 (12), p.2558-2570 |
issn | 1867-3880 1867-3899 |
language | eng |
recordid | cdi_proquest_journals_2057448190 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Acetic acid Catalysis Density functional theory Hydrogen storage Hydrogenation Metal-organic frameworks Nanoparticles Palladium palladium nanoparticles phenol hydrogenation Phenols Reaction mechanisms |
title | Phenol Catalytic Hydrogenation over Palladium Nanoparticles Supported on Metal‐Organic Frameworks in the Aqueous Phase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T12%3A07%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phenol%20Catalytic%20Hydrogenation%20over%20Palladium%20Nanoparticles%20Supported%20on%20Metal%E2%80%90Organic%20Frameworks%20in%20the%20Aqueous%20Phase&rft.jtitle=ChemCatChem&rft.au=Chen,%20Hao&rft.date=2018-06-21&rft.volume=10&rft.issue=12&rft.spage=2558&rft.epage=2570&rft.pages=2558-2570&rft.issn=1867-3880&rft.eissn=1867-3899&rft_id=info:doi/10.1002/cctc.201800211&rft_dat=%3Cproquest_cross%3E2057448190%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2057448190&rft_id=info:pmid/&rfr_iscdi=true |