Phenol Catalytic Hydrogenation over Palladium Nanoparticles Supported on Metal‐Organic Frameworks in the Aqueous Phase

Metal‐organic frameworks (MOFs) have been extensively applied as supports in hydrogenation catalysis owing to their topological structure and high hydrogen storage capabilities. Pd nanoparticles (NPs) supported on a hollow box‐shaped MOF were prepared for phenol hydrogenation in the aqueous phase. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemCatChem 2018-06, Vol.10 (12), p.2558-2570
Hauptverfasser: Chen, Hao, He, Yulian, Pfefferle, Lisa D., Pu, Weihua, Wu, Yulong, Qi, Suitao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2570
container_issue 12
container_start_page 2558
container_title ChemCatChem
container_volume 10
creator Chen, Hao
He, Yulian
Pfefferle, Lisa D.
Pu, Weihua
Wu, Yulong
Qi, Suitao
description Metal‐organic frameworks (MOFs) have been extensively applied as supports in hydrogenation catalysis owing to their topological structure and high hydrogen storage capabilities. Pd nanoparticles (NPs) supported on a hollow box‐shaped MOF were prepared for phenol hydrogenation in the aqueous phase. The MOF preparation modulated by monocarboxylic acids grow into different structures. MOF140‐AA, modulated by acetic acid at 140 °C, presents the structure of regular cube with a smooth surface. Compared to other supports, Pd NPs supported on MOF140‐AA presents high phenol conversion due to the high hydrogen storage capability of MOF140‐AA. Phenol is completely converted to cyclohexanol over Pd/MOF140‐AA reacted at 260 °C for 2 h with high selectivity. The reaction mechanism of phenol hydrogenation is studied by density functional theory (DFT). The phenol hydrogenation mechanism is calculated on a Pd38 cluster, which describes the reaction pathway consistent with experimental results. Hex, hex, hex! Phenol hydrogenation mechanism was divided into two pathways. The main pathway is phenol firstly hydrogenate to cyclohexanone and then continuously hydrogenate to cyclohexanol. The side pathway is phenol directly hydrogenate to cyclohexanol. Finally, a part of cyclohexanol converts to cyclohexane.
doi_str_mv 10.1002/cctc.201800211
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2057448190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2057448190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3831-3ed5bcd758969eb6d0694330b6eca6d86575d87f8e7997e433f504d84870d56c3</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhiMEEqWwMltiTrHrJLbHKqIUqdBKlDly7UubksbBTijZeASekSfBVVEZme5O9_3_nf4guCZ4QDAe3irVqMEQE-4HQk6CHuEJCykX4vTYc3weXDi3wTgRlMW94GO-hsqUKJWNLLumUGjSaWtWUMmmMBUy72DRXJal1EW7RU-yMrW0nivBoee2ro1tQCNPPoJ3-P78mtmVrLzP2Mot7Ix9daioULMGNHprwbQOzdfSwWVwlsvSwdVv7Qcv47tFOgmns_uHdDQNFeWUhBR0vFSaxVwkApaJ9o9HlOJlAkommicxizVnOQcmBAO_ymMcaR5xhnWcKNoPbg6-tTX-vmuyjWlt5U9mQxyzKOJEYE8NDpSyxjkLeVbbYittlxGc7dPN9ulmx3S9QBwEu6KE7h86S9NF-qf9AVqXgKM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2057448190</pqid></control><display><type>article</type><title>Phenol Catalytic Hydrogenation over Palladium Nanoparticles Supported on Metal‐Organic Frameworks in the Aqueous Phase</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Hao ; He, Yulian ; Pfefferle, Lisa D. ; Pu, Weihua ; Wu, Yulong ; Qi, Suitao</creator><creatorcontrib>Chen, Hao ; He, Yulian ; Pfefferle, Lisa D. ; Pu, Weihua ; Wu, Yulong ; Qi, Suitao</creatorcontrib><description>Metal‐organic frameworks (MOFs) have been extensively applied as supports in hydrogenation catalysis owing to their topological structure and high hydrogen storage capabilities. Pd nanoparticles (NPs) supported on a hollow box‐shaped MOF were prepared for phenol hydrogenation in the aqueous phase. The MOF preparation modulated by monocarboxylic acids grow into different structures. MOF140‐AA, modulated by acetic acid at 140 °C, presents the structure of regular cube with a smooth surface. Compared to other supports, Pd NPs supported on MOF140‐AA presents high phenol conversion due to the high hydrogen storage capability of MOF140‐AA. Phenol is completely converted to cyclohexanol over Pd/MOF140‐AA reacted at 260 °C for 2 h with high selectivity. The reaction mechanism of phenol hydrogenation is studied by density functional theory (DFT). The phenol hydrogenation mechanism is calculated on a Pd38 cluster, which describes the reaction pathway consistent with experimental results. Hex, hex, hex! Phenol hydrogenation mechanism was divided into two pathways. The main pathway is phenol firstly hydrogenate to cyclohexanone and then continuously hydrogenate to cyclohexanol. The side pathway is phenol directly hydrogenate to cyclohexanol. Finally, a part of cyclohexanol converts to cyclohexane.</description><identifier>ISSN: 1867-3880</identifier><identifier>EISSN: 1867-3899</identifier><identifier>DOI: 10.1002/cctc.201800211</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Acetic acid ; Catalysis ; Density functional theory ; Hydrogen storage ; Hydrogenation ; Metal-organic frameworks ; Nanoparticles ; Palladium ; palladium nanoparticles ; phenol hydrogenation ; Phenols ; Reaction mechanisms</subject><ispartof>ChemCatChem, 2018-06, Vol.10 (12), p.2558-2570</ispartof><rights>2018 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3831-3ed5bcd758969eb6d0694330b6eca6d86575d87f8e7997e433f504d84870d56c3</citedby><cites>FETCH-LOGICAL-c3831-3ed5bcd758969eb6d0694330b6eca6d86575d87f8e7997e433f504d84870d56c3</cites><orcidid>0000-0001-9972-4137</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcctc.201800211$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcctc.201800211$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>He, Yulian</creatorcontrib><creatorcontrib>Pfefferle, Lisa D.</creatorcontrib><creatorcontrib>Pu, Weihua</creatorcontrib><creatorcontrib>Wu, Yulong</creatorcontrib><creatorcontrib>Qi, Suitao</creatorcontrib><title>Phenol Catalytic Hydrogenation over Palladium Nanoparticles Supported on Metal‐Organic Frameworks in the Aqueous Phase</title><title>ChemCatChem</title><description>Metal‐organic frameworks (MOFs) have been extensively applied as supports in hydrogenation catalysis owing to their topological structure and high hydrogen storage capabilities. Pd nanoparticles (NPs) supported on a hollow box‐shaped MOF were prepared for phenol hydrogenation in the aqueous phase. The MOF preparation modulated by monocarboxylic acids grow into different structures. MOF140‐AA, modulated by acetic acid at 140 °C, presents the structure of regular cube with a smooth surface. Compared to other supports, Pd NPs supported on MOF140‐AA presents high phenol conversion due to the high hydrogen storage capability of MOF140‐AA. Phenol is completely converted to cyclohexanol over Pd/MOF140‐AA reacted at 260 °C for 2 h with high selectivity. The reaction mechanism of phenol hydrogenation is studied by density functional theory (DFT). The phenol hydrogenation mechanism is calculated on a Pd38 cluster, which describes the reaction pathway consistent with experimental results. Hex, hex, hex! Phenol hydrogenation mechanism was divided into two pathways. The main pathway is phenol firstly hydrogenate to cyclohexanone and then continuously hydrogenate to cyclohexanol. The side pathway is phenol directly hydrogenate to cyclohexanol. Finally, a part of cyclohexanol converts to cyclohexane.</description><subject>Acetic acid</subject><subject>Catalysis</subject><subject>Density functional theory</subject><subject>Hydrogen storage</subject><subject>Hydrogenation</subject><subject>Metal-organic frameworks</subject><subject>Nanoparticles</subject><subject>Palladium</subject><subject>palladium nanoparticles</subject><subject>phenol hydrogenation</subject><subject>Phenols</subject><subject>Reaction mechanisms</subject><issn>1867-3880</issn><issn>1867-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQhiMEEqWwMltiTrHrJLbHKqIUqdBKlDly7UubksbBTijZeASekSfBVVEZme5O9_3_nf4guCZ4QDAe3irVqMEQE-4HQk6CHuEJCykX4vTYc3weXDi3wTgRlMW94GO-hsqUKJWNLLumUGjSaWtWUMmmMBUy72DRXJal1EW7RU-yMrW0nivBoee2ro1tQCNPPoJ3-P78mtmVrLzP2Mot7Ix9daioULMGNHprwbQOzdfSwWVwlsvSwdVv7Qcv47tFOgmns_uHdDQNFeWUhBR0vFSaxVwkApaJ9o9HlOJlAkommicxizVnOQcmBAO_ymMcaR5xhnWcKNoPbg6-tTX-vmuyjWlt5U9mQxyzKOJEYE8NDpSyxjkLeVbbYittlxGc7dPN9ulmx3S9QBwEu6KE7h86S9NF-qf9AVqXgKM</recordid><startdate>20180621</startdate><enddate>20180621</enddate><creator>Chen, Hao</creator><creator>He, Yulian</creator><creator>Pfefferle, Lisa D.</creator><creator>Pu, Weihua</creator><creator>Wu, Yulong</creator><creator>Qi, Suitao</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9972-4137</orcidid></search><sort><creationdate>20180621</creationdate><title>Phenol Catalytic Hydrogenation over Palladium Nanoparticles Supported on Metal‐Organic Frameworks in the Aqueous Phase</title><author>Chen, Hao ; He, Yulian ; Pfefferle, Lisa D. ; Pu, Weihua ; Wu, Yulong ; Qi, Suitao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3831-3ed5bcd758969eb6d0694330b6eca6d86575d87f8e7997e433f504d84870d56c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acetic acid</topic><topic>Catalysis</topic><topic>Density functional theory</topic><topic>Hydrogen storage</topic><topic>Hydrogenation</topic><topic>Metal-organic frameworks</topic><topic>Nanoparticles</topic><topic>Palladium</topic><topic>palladium nanoparticles</topic><topic>phenol hydrogenation</topic><topic>Phenols</topic><topic>Reaction mechanisms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>He, Yulian</creatorcontrib><creatorcontrib>Pfefferle, Lisa D.</creatorcontrib><creatorcontrib>Pu, Weihua</creatorcontrib><creatorcontrib>Wu, Yulong</creatorcontrib><creatorcontrib>Qi, Suitao</creatorcontrib><collection>CrossRef</collection><jtitle>ChemCatChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Hao</au><au>He, Yulian</au><au>Pfefferle, Lisa D.</au><au>Pu, Weihua</au><au>Wu, Yulong</au><au>Qi, Suitao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phenol Catalytic Hydrogenation over Palladium Nanoparticles Supported on Metal‐Organic Frameworks in the Aqueous Phase</atitle><jtitle>ChemCatChem</jtitle><date>2018-06-21</date><risdate>2018</risdate><volume>10</volume><issue>12</issue><spage>2558</spage><epage>2570</epage><pages>2558-2570</pages><issn>1867-3880</issn><eissn>1867-3899</eissn><abstract>Metal‐organic frameworks (MOFs) have been extensively applied as supports in hydrogenation catalysis owing to their topological structure and high hydrogen storage capabilities. Pd nanoparticles (NPs) supported on a hollow box‐shaped MOF were prepared for phenol hydrogenation in the aqueous phase. The MOF preparation modulated by monocarboxylic acids grow into different structures. MOF140‐AA, modulated by acetic acid at 140 °C, presents the structure of regular cube with a smooth surface. Compared to other supports, Pd NPs supported on MOF140‐AA presents high phenol conversion due to the high hydrogen storage capability of MOF140‐AA. Phenol is completely converted to cyclohexanol over Pd/MOF140‐AA reacted at 260 °C for 2 h with high selectivity. The reaction mechanism of phenol hydrogenation is studied by density functional theory (DFT). The phenol hydrogenation mechanism is calculated on a Pd38 cluster, which describes the reaction pathway consistent with experimental results. Hex, hex, hex! Phenol hydrogenation mechanism was divided into two pathways. The main pathway is phenol firstly hydrogenate to cyclohexanone and then continuously hydrogenate to cyclohexanol. The side pathway is phenol directly hydrogenate to cyclohexanol. Finally, a part of cyclohexanol converts to cyclohexane.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cctc.201800211</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9972-4137</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1867-3880
ispartof ChemCatChem, 2018-06, Vol.10 (12), p.2558-2570
issn 1867-3880
1867-3899
language eng
recordid cdi_proquest_journals_2057448190
source Wiley Online Library Journals Frontfile Complete
subjects Acetic acid
Catalysis
Density functional theory
Hydrogen storage
Hydrogenation
Metal-organic frameworks
Nanoparticles
Palladium
palladium nanoparticles
phenol hydrogenation
Phenols
Reaction mechanisms
title Phenol Catalytic Hydrogenation over Palladium Nanoparticles Supported on Metal‐Organic Frameworks in the Aqueous Phase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T12%3A07%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phenol%20Catalytic%20Hydrogenation%20over%20Palladium%20Nanoparticles%20Supported%20on%20Metal%E2%80%90Organic%20Frameworks%20in%20the%20Aqueous%20Phase&rft.jtitle=ChemCatChem&rft.au=Chen,%20Hao&rft.date=2018-06-21&rft.volume=10&rft.issue=12&rft.spage=2558&rft.epage=2570&rft.pages=2558-2570&rft.issn=1867-3880&rft.eissn=1867-3899&rft_id=info:doi/10.1002/cctc.201800211&rft_dat=%3Cproquest_cross%3E2057448190%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2057448190&rft_id=info:pmid/&rfr_iscdi=true